Genetic diversity and the management of natural populations of brown trout

  • R. Guyomard


Data accumulated over the past twenty years have clearly shown the presence of significant genetic variability within most species. Part of this variability confers different adaptive values on individuals making up the species. The objective of genetic improvement is to select and propagate the genotypes showing the best adaptive value in a given production system. Selective breeding methods have been established for most domesticated species or populations with, in parallel, the setting up of gene banks. In contrast, this step has seldom been adopted for species which are directly exploited in the environment, such as fish. This tardiness results, on the one hand, from the very recent consideration of genetic concepts of populations in fishery management and, on the other hand, from the difficulty in defining the selection criteria and in carrying out controls for performance in the natural environment. Genetic improvement, as conceived in domesticated species, appears utopic when considering natural populations. It is sometimes possible to experiment with management plans for natural populations, with respect to the genetic diversity of species and the principles of population genetics, and to formulate schemes which, without being ideal or definitive, can constitute progress in relation to current practice.


Natural Population Brown Trout Chum Salmon Cutthroat Trout Mediterranean Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbat-Leterrier A., Guyomard R., Krieg F., 1989. Natural introgression between introduced domesticated strains and Mediterranean native populations of brown trout (Salmo trutta L.). Aquat. Living Resour., 2, 215–223.CrossRefGoogle Scholar
  2. Behnke R. J., 1968. A new subgenus and species of trout, Salmo (Platysalmo) platycephalus, from southcentral Turkey, with comments on the classification of the sub-family salmoninae. Mitt. Hamburg Zool. Mus. Inst., 66, 1–15.Google Scholar
  3. Behnke R. J., 1972. The systematics of salmonid fishes of recently glaciated lakes. J. Fish. Res. Board Can., 29, 639–671.CrossRefGoogle Scholar
  4. Bernatchez L., Guyomard R., Bonhomme F., 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout (Salmo trutta, L.) populations. Mol. Ecol., 1, 161–173.CrossRefGoogle Scholar
  5. Busack C. A., Gall G. A. E., 1981. Introgressive hybridization in populations of Paiute cutthroat trout (Salmo clarki seleneris). Can. J. Fish. Aquat. Sci., 94, 939–951.CrossRefGoogle Scholar
  6. Campton D. E., Utter F. M., 1985. Natural hybridization between steelhead trout (Salmo gairdneri) and coastal cutthroat trout (Salmo clarki clarki) in two Puget Sound Streams. Can. J. Fish. Aquat. Sci., 42, 110–119.CrossRefGoogle Scholar
  7. Crozier W. W., 1983. Population biology of Lough Neagh brown trout (Salmo trutta L.) Ph.D. Thesis, The Queen’s University, Belfast, 478 pp.Google Scholar
  8. Dorofeyeva Ye.A., Zinov’yev Ye.A., Klyukanov V. A., Reshetnikov Yu.S., Savvai-tova K. A., Shaposhnikova G. Kh., 1981. The present state of research into the phylogeny and classification of salmonoidei. J. Ichtyol., 21, 1–20.Google Scholar
  9. Dorofeyeva Ye.A., Rukhkyan R. G., 1982. Divergence of the sevan trout, Salmo ischchan, in the light of karyological and morphological data. J. Ichtyol, 22, 23–36.Google Scholar
  10. Falconer D. S., 1974. Introduction à la Génétique Quantitative. Masson, Paris, 284 pp.Google Scholar
  11. Ferguson A., 1985. Lough Melvin, a unique fish community. Occasional papers in Irish science and technology, 1, Went memorial lecture, Royal Dublin Society, 17 pp.Google Scholar
  12. Ferguson A., Fleming C. C., 1983. Evolutionary and taxonomic significance of protein variation in brown trout (Salmo trutta L.) and other salmonids. In G. S. Oxford and D. Rollison (Eds), Protein Polymorphism: Adaptive and Taxonomic Significance, 86–99, Academic Press, London.Google Scholar
  13. Fleming C. C., 1983. Population biology of anadromous brown trout (Salmo trutta L.) in Ireland and Britain. Ph.D. Thesis. The Queen’s University of Belfast, 475 pp.Google Scholar
  14. Giuffra E., Bernatchez L., Guyomard R., 1994. Mitochondrial control region and protein coding genes sequence variation among phenotypic forms of brown trout, Salmo trutta L., from Northern Italy. Molecular Ecology, 3, 161–171.CrossRefGoogle Scholar
  15. Gorman G. C., Renzi J., 1979. Genetic distance and heterozygosity estimates in electrophoretic studies effects of sample size. Copeia, 242–249.CrossRefGoogle Scholar
  16. Guyomard R., 1987. Differenciation génétique des populations de saumon atlantique: revue et interprétation des données électrophorétiques et quantitives. In M. Thibault and R. Billard (Eds), Restauration des Rivières à Saumons, INRA, Paris, 297–308.Google Scholar
  17. Guyomard R., Krieg F., 1983. Electrophoretic variations in six populations of brown trout (Salmo trutta L.). Can. J. Genet. Cytol., 25, 403–413.CrossRefGoogle Scholar
  18. Guyomard R., Grevisse G., Oury F. X., Dvaine P., 1984. Evolution de la variabilité génétique inter et intrapopulations de Salmonidés issues de mêmes pools géniques. Can. J. Fish. Aquat. Sci., 41, 1024–1029.CrossRefGoogle Scholar
  19. Guyomard R., Chevassus B., 1985. Recherches sur la génétique des populations de truite commune et de saumon atlantique. Compte-rendu de contrat INRA-CSP, 15 pp.Google Scholar
  20. Gyllensten U., Leary R. F., Allendorf F. W., Wilson A. C., 1985. Introgression between two cutthroat trout subspecies with substantial karyotypic, nuclear and mitochondrial genomic divergence. Genetic, 111, 905–915.Google Scholar
  21. Halliburton R., Pikpin R. E., Gall G. A. E., 1983. Reproduction success of artificially hybridized golden trout (Salmo aguabonita) and rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci., 40, 1264–1269.CrossRefGoogle Scholar
  22. Krieg F., 1984. Recherche d’une differenciation génétique entre populations de Salmo trutta. Thèse de 3e cycle, Université de Paris-sud, Orsay, 92 pp.Google Scholar
  23. Krieg F., Guyomard R., 1983. Mise en evidence électrophorétique d’une forte différenciation génétique entre population de truite fario en corse. C.R. Acad. Sci., Paris, 296, 1084–1089.Google Scholar
  24. Krieg F., Guyomard R., 1985. Population genetics of French brown trout (Salmo trutta L.).: large geographical differentiation of wild populations and high similarity of domesticated stocks. Genet. Sel. Evol., 17, 225–242.CrossRefGoogle Scholar
  25. Krieg F., Guyomard R., Maisse G., Chevassus B., 1989. Influence du génotype et du substrat sur la croissance et la survie au cours de la résorption vitelline chez 1 truite commune (Salmo trutta L.). Bull. Fr. Pêche Piscic., 311, 126–133.Google Scholar
  26. Leary R. F., Allendorf F. W., Phelps S. R., Knudsen K., 1987. Genetic divergence and identification of seven cutthroat trout subspecies and rainbow trout. Trans. Am. Fish. Soc., 116, 580–587.CrossRefGoogle Scholar
  27. Li W.-H., 1976. Effect of migration on genetic distance. Am. Nat., 110, 841–847.CrossRefGoogle Scholar
  28. Loudenslager E. J., Gall G. A. E., 1980. Geographic patterns of protein variations and subspeciation in cutthroat (Salmo clarki). Syst. Zool., 28, 27–42.CrossRefGoogle Scholar
  29. Maisse G., Porcher J. P., Nihouarn A., Chevassus B., 1983. Comparaison des performances en pisciculture d’un hybride intraspécifique (mâle sau vage × femelle domestique) et de la souche domestique chez la truite commune (Salmo trutta L.). Essais préliminaires d’implantation en ruisseau. Bull. Fr. Piscic., 2911, 167–181.CrossRefGoogle Scholar
  30. May B., 1980. The salmonid genome: evolutionary restructurating following a tetraploïd event. Ph.D. thesis, Pennsylvania State University, 199 pp.Google Scholar
  31. Nei M., 1975. Molecular Population Genetics and Evolution. North Holland, Amsterdam, 228 pp.Google Scholar
  32. Nei M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.PubMedPubMedCentralGoogle Scholar
  33. Nei M., 1987. Genetic distance and molecular phylogeny. In N. Ryman and F. Utter (Eds), Population Genetics and Fishery Management, 193–223, University of Washington Press, Seattle and London.Google Scholar
  34. Nelson R., Soule M., 1987. Genetic conservation of exploited fishes. In N. Ryman and F. Utter (Eds), Population Genetics and Fishery Management, 345–368, University of Washington Press, Seattle and London.Google Scholar
  35. Okazaki T., 1982. Genetic study on population structure in chum salmon (Oncorhynchus keta). Bull. Far Seas Fish. Res. Lab., 19, 25–116.Google Scholar
  36. Olivari G., Brun G., 1988. Le nombre de cœca pyloriques dans les populations naturelles de trite commune Salmo trutta Linné en Corse. Bull. Ecol., 19, 197–200.Google Scholar
  37. Osinov A. G., 1984. Zoographical origins of brown trout, Salmo trutta (Salmonidae): data from biochemical genetic markers. J. Ichthyol., 24, 10–23.Google Scholar
  38. Pasteur N., Pasteur G., Bonhomme F., Catalan J., Britton-Davidian J., 1987. Manuel technique de génétique par électrophorèse des protéines. Technique et Documentation, Lavoisier, Paris, 217 pp.Google Scholar
  39. Presa P., 1995. Déterminisme et polymorphisme génétiques des séquences microsatellites de Salmo trutta et d’autres salmonidés. Comparaison avec le polymorphisme des locus enzymatiques. Thèse d’université. Orsay.Google Scholar
  40. Presa-Martinez P., Krieg F., Estoup A., Guyomard R., 1994. Diversité et gestion génétique de la truite commune: apport de l’étude du polymorphisme des locus protéiques et microsatellites. Génét. Sel. Evol., 26, suppl. 1, 183s–202s (Elsevier/INRA).CrossRefGoogle Scholar
  41. Richard A., 1981. Observations préliminaires sur les populations de truite de mer (Salmo trutta) en Basse-Normandie. Bull. Fr. Piscic., 283, 114–124.CrossRefGoogle Scholar
  42. Ryman N., Allendorf F. W., Stahl G., 1979. Reproductive isolation with little genetic divergence in sympatric population of brown trout (Salmo trutta). Genetics, 92, 247–262.PubMedPubMedCentralGoogle Scholar
  43. Ryman N., 1983. Patterns of distribution of biochemical genetic variation in salmonids: differences between species. Aquaculture, 33, 1–21.CrossRefGoogle Scholar
  44. Sneath P. H. A., Sokal R. R., 1973. Numerical taxonomy, W. H. Freeman, San Francisco, 573 pp.Google Scholar
  45. Stoneking M., Wagner D. J., Hildebrand A. C., 1981. Genetic evidence suggesting subspecific differences between northern and southern populations of brook trout (Salvelinus fontinalis). Copeia, 810–819.Google Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 1999

Authors and Affiliations

  • R. Guyomard

There are no affiliations available

Personalised recommendations