Skip to main content

Dini’s Theorem: A Constructive Case Study

  • Conference paper
Book cover Combinatorics, Computability and Logic

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

Abstract

The classical statement of Dini’s Theorem on the uniform convergence of increasing sequences of continuous functions cannot be proved constructively, since it fails in the recursive model. Nevertheless, a basic constructive version of the theorem is proved, as is a version in which the uniform convergence of the sequence of functions is reduced to the convergence of some subsequence of a particular sequence of real numbers. After some additional reductions and conjectures related to Dini’s Theorem, the paper ends by showing that a particular version of the theorem implies a weak Heine-Borel-Lebesgue Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeson, M.J.: Principles of continuous choice and continuity of functions in formal systems for constructive mathematics, Ann. Math. Logic 12, (1977) 249–322

    Article  MathSciNet  MATH  Google Scholar 

  2. Bishop E., Bridges, D.: Constructive Analysis, Grundlehren der math. Wissenschaften 279, Springer-Verlag, Heidelberg (1985)

    Google Scholar 

  3. Bridges D., Demuth, O.: On the Lebesgue measurability of continuous functions in constructive analysis, Bull. Amer. Math. Soc. 24 (2), (1991) 259–276

    Article  MathSciNet  MATH  Google Scholar 

  4. Bridges,D., Ishihara, H., Schuster, P.: Compactness and Continuity Revisited, preprint, University of Canterbury, (1999)

    Google Scholar 

  5. Bridges, D., Ishihara, H., Schuster, P.: Sequential Compactness in Constructive Analysis, Osterr. Akad. Wiss. Math.—Natur. Kl. Sitzungsber. II. 208 (1999) 159–163

    MathSciNet  MATH  Google Scholar 

  6. Bridges, D., Richman, F.: Varieties of Constructive Mathematics, London Math. Soc. Lecture Notes 97, Cambridge Univ Press (1987)

    Book  Google Scholar 

  7. Constable R. L. et al.: Implementing Mathematics with the Nuprl Proof Development System, Prentice—Hall, Englewood Cliffs, New Jersey (1986)

    Google Scholar 

  8. Dieudonné, J.: Foundations of Modern Analysis, Academic Press, New York (1960)

    MATH  Google Scholar 

  9. Hayashi, S, Nakano, H.: PX: A Computational Logic, MIT Press, Cambridge MA (1988)

    Google Scholar 

  10. Ishihara, H.: Continuity and nondiscontinuity in constructive mathematics, J. Symb. Logic 56 (4), (1991) 1349–1354

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohlenbach, U.: Relative constructivity’, J. Symb. Logic 63, (1998) 1218–1238

    Article  MathSciNet  MATH  Google Scholar 

  12. Kohlenbach, U.: The use of a logical principle of uniform boundedness in analysis. Logic and Foundations of Mathematics (Cantini, Casari, Minari eds. ), Kluwer (1999) 93–106

    Google Scholar 

  13. Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part, Logic Colloquium 1973 (H.E. Rose, J.C. Shepherdson eds.), North-Holland, Amsterdam, (1975) 73–118

    Chapter  Google Scholar 

  14. Myhill, J.: Some properties of intuitionistic Zermelo—Fraenkel set theory, Cambridge Summer School in Mathematical Logic (A. Mathias, H. Rogers eds.), Lecture Notes in Mathematics 337, Springer-Verlag, Berlin, (1973) 206–231

    Chapter  Google Scholar 

  15. Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis, J. Symbolic Logic 14, (1949) 145–158

    Article  MathSciNet  MATH  Google Scholar 

  16. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction (two volumes), North Holland, Amsterdam (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Bridges, D.S. (2001). Dini’s Theorem: A Constructive Case Study. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0717-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0717-0_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-526-7

  • Online ISBN: 978-1-4471-0717-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics