First-Order Optimal Approximation of Binary Sequences

  • Nicholas Kolokotronis
  • Panagiotis Rizomiliotis
  • Nicholas Kalouptsidis
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)

Summary

The determination of the minimum linear span sequence that differs from a given binary sequence, of period N = 2 n −1, by at most one digit is discussed and three methods are presented: the sequential divisions method, the congruential equations method and the phase synchronization method. High level algorithm organizations are provided. Finally, guidelines on sequence characterization and design via the notion of robustness are given.

Keywords

Autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blahut R. E. (1984) Theory and Practice of Error Control Codes. Addison-Wesley Inc.Google Scholar
  2. 2.
    Cusick T. W., Ding C et al. (1998) Stream Ciphers and Number Theory. North-Holland Mathematical Library, Elsevier Science.MATHGoogle Scholar
  3. 3.
    Ding C., Xiao G. et al. (1991) The Stability Theory of Stream Ciphers. Lecture Notes in Computer Science, Springer-Verlag.Google Scholar
  4. 4.
    Games, R. A., Chan, A. H. (1983) A fast algorithm for determining the complexity of a binary sequence with period 2n. IEEE Transactions on Information Theory 29(1), 144–146.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Golomb, S. W. (1967) Shift Register Sequences. Holden-Day Inc., San Francisco.MATHGoogle Scholar
  6. 6.
    Golomb, S. W. (1980) On the classification of balanced binary sequences of period 2n–1. IEEE Transactions on Information Theory 26(6), 730–732.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Groth, E. J. (1971) Generation of binary sequences with controllable complexity. IEEE Transactions on Information Theory 17(3), 288–296.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kalouptsidis N. (1996) Signal Processing Systems. Telecommunications and Signal Processing Series, John Wiley & Sons Inc.Google Scholar
  9. 9.
    Key, E. L. (1976) An analysis of the structure and complexity of nonlinear binary sequence generators. IEEE Transactions on Information Theory 22(6), 732–736.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kurosawa, K., Sato, F. et al. (2000) A relationship between linear complexity and fc-error linear complexity. IEEE Transactions on Information Theory 46(2), 694–698.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Lidl R., Niederreiter H. (1996) Finite Fields. Encyclopedia of Mathematics and its Applications 20, Cambridge University Press.Google Scholar
  12. 12.
    Massey, J. L. (1969) Shift register synthesis and BCH decoding. IEEE Transactions on Information Theory 15(1), 122–127.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rueppel R. A. (1986) Analysis and Design of Stream Ciphers. Communications and Control Engineering Series, Springer-Verlag.Google Scholar
  14. 14.
    Stamp, M., Martin, C. F. (1993) An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Transactions on Information Theory 39(4), 1398–1401.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Nicholas Kolokotronis
    • 1
  • Panagiotis Rizomiliotis
    • 1
  • Nicholas Kalouptsidis
    • 1
  1. 1.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations