Intestinal Absorption of Phosphate

  • T. Yamaguchi
  • T. Sugimoto
  • K. Chihara

Abstract

Phosphate homeostasis in humans is controlled by the balance between dietary intake, intestinal absorption, bone deposition/resorption, and renal excretion. This control is partly achieved by interacting endocrine regulatory loops that mainly involves parathyroid hormone (PTH) and vitamin D in the form of the biologically most active compound 1,25(OH)2D3. Phosphate homeostasis is primarily adjusted to provide sufficient amounts of inorganic phosphate (Pi) to a variety of body compartments ranging from the bone skeleton to cells in soft tissues. Pi is especially indispensable for both bone formation and cellular metabolism [1, 2].

Keywords

Leukemia Transportation Acid Number Hydroxyapatite Calcium Carbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loghman-Adham M. Adaptation to changes in dietary phosphorus intake in health and renal failure. J Lab Clin Med 1997;129:176–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Cross HS, Debiec H, Peterlik M. Mechanism and regulation of intestinal phosphate absorption. Miner Electrolyte Metab 1990;16:115–24.PubMedGoogle Scholar
  3. 3.
    Kayne LH, D’Argenio DZ, Meyer JH, Hu MS, Jamgotchian N, Lee DBN. Analysis of segmental phosphate absorption in intact rats. A compartmental analysis approach. J Clin Invest 1003;91:915–22. CrossRefGoogle Scholar
  4. 4.
    Loghman-Adham M, Szczepanska-Konkel M, Yusufi ANK, VanScoy M, Dousa TP. Inhibition of Na+-Pi co-transport in small gut brush border by phospho-carboxylic acids. Am J Physiol 252:G244–G249.Google Scholar
  5. 5.
    Lee DBN, Walling MW, Corry DB. Phosphate transport across rat jejunum: influence of sodium, pH, and 1,25-dihydroxyvitamin D3. Am J Physiol 1986;251:G90–5.PubMedGoogle Scholar
  6. 6.
    Danisi G, Murer H, Straub RW. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Am J Physiol 1984;246:G 180–6. Google Scholar
  7. 7.
    Borowitz SM, Ghishan FK. Phosphate transport in human jejunal brush border membrane vesicles. Gastroenterology 1989;96:4–10.PubMedGoogle Scholar
  8. 8.
    Lemann J, Favus MJ. The intestinal absorption of calcium, magnesium, and phosphate. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Philadelphia: Lippincott Williams & Wilkins, 1999;63–7.Google Scholar
  9. 9.
    Berner W, Kinne R, Murer H. Phosphate transport into brush border membrane vesicles isolated from rat small intestine. Biochem J 1976;160:467–74.PubMedGoogle Scholar
  10. 10.
    Ghishan FK, Kikuchi K, Arab N. Phosphate transport by rat intestinal basolateral-membrane vesicles. Biochem J 1987;243:641–6.PubMedGoogle Scholar
  11. 11.
    Kikuchi K, Ghishan FK. Phosphate transport by basolateral plasma membranes of human small intestine. Gastroenterology 1987;93:106–13.PubMedGoogle Scholar
  12. 12.
    Nakagawa N, Ghishan FK. Transport of phosphate by plasma membranes of the jejunum and kidney of the mouse model of hypophosphatemic vitamin D-resistant rickets. Proc Soc Exp Biol Med 1993;203:328–35.PubMedGoogle Scholar
  13. 13.
    Quamme GA. Phosphate transport in intestinal brush border membrane vesicles: effect of pH and dietary phosphate. Am J Physiol 1985;249:G 168–76. Google Scholar
  14. 14.
    Shiau Y-F, Fernandez P, Jackson MJ, McMonagle S. Mechanism maintaining a low-pH microclimate in the intestine. Am J Physiol 1985;248:G608–17.PubMedGoogle Scholar
  15. 15.
    Peerce BE. Simultaneous occlusion of Na+and phosphate by the intestinal brush border membrane Na+/phosphate co-transporter. Kidney Int 1996;49:988–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Berner W, Kinne R, Murer H. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem J 1076;160:467–74.Google Scholar
  17. 17.
    Caverzasio J, Danisi G, Straub RW, Murer H, Bonjour JP. Adaptation of phosphate transport to low- phosphate diet in renal and intestinal brush border membrane vesicles: influence of sodium and pH. Pflugers Arch 1987;409:333–6.PubMedGoogle Scholar
  18. 18.
    Quamme GA. Phosphate transport in intestinal brush border membrane vesicles: effect of pH and dietary phosphate. Am J Physiol 1985;249:G 168–76. Google Scholar
  19. 19.
    Danisi G, Murer H, Straub RW. Effect of pH on phosphate transport into intestinal brush border membrane vesicles. Am J Physiol 1984;246:G 180–6. Google Scholar
  20. 20.
    Shirazi-Beechey SP, Gorvel JP, Beechey RB. Phosphate transport in intestinal brush border membrane. J Bioenerg Biomembr 1988;20:273–88.PubMedCrossRefGoogle Scholar
  21. 21.
    Murer H, Biber J. Molecular mechanisms of renal apical Na phosphate co-transport. Annu Rev Physiol 1996;58:607–18.PubMedCrossRefGoogle Scholar
  22. 22.
    Peterlik M, Wasserman RH. Effect of vitamin D on transepithelial phosphate transport in chick intestine. Am J Physiol 1978;234:E379–88.PubMedGoogle Scholar
  23. 23.
    Peterlik M, Wasserman RH. Regulation by vitamin D of intestinal phosphate absorption. Horm Metab Res 1980;12:216–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Schroder B, Hattenhauser O, Breves G. Phosphate transport in pig proximal small intestines during postnatal development. Lack of modulation by calcitriol. Endocrinology 1998;139:1500–7.Google Scholar
  25. 25.
    Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Matsumoto T, Fontaine O, Rasmussen H. Effect of 1,25-dihydroxyvitamin D3 on phosphate uptake into chick intestinal brush border membrane vesicles. Biochim Biophys Acta 1980;599:13–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Fuchs R, Peterlik M. Vitamin D-induced phosphate transport in intestinal brush border membrane vesicles. Biochem Biophys Res Commun 1980;93:87–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Yagci A, Werner A, Murer H, Biber J. Effect of rabbit duodenal mRNA on phosphate transport in Xenopus laevis oocytes: dependence on l,25-dihydroxy-vitamin-D3. Pflugers Arch 1992;422:211–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Cross HS, Peterlik M. Calcium and inorganic phosphate transport in embryonic chick intestine: triiodothyronine enhances the genomic action of 1,25-dihydroxycholecalciferol. J Nutr 1988; 118: 1529–34.PubMedGoogle Scholar
  30. 30.
    Debiec H, Cross HS, Peterlik M. 1,25-Dihydroxycholecalciferol-related Na+/D-glucose transport in brush border membrane vesicles from embryonic chick jejunum. Modulation by triiodothyronine. Eur J Biochem 1991;201:709–13.Google Scholar
  31. 31.
    Loghman-Adham M. Adaptation to changes in dietary phosphorus intake in health and in renal failure. J Lab Clin Med 1997;129:176–88.PubMedCrossRefGoogle Scholar
  32. 32.
    Danisi G, Caverzasio J, Trechsel U, Bonjour JP, Straub RW. Phosphate transport adaptation in rat jejunum and plasma level of 1,25-dihydroxyvitamin D3. Scand J Gastroenterol 1990;25:210–5.PubMedGoogle Scholar
  33. 33.
    Caverzasio J, Danisi G, Straub RW, Murer H, Bonjour JP. Adaptation of phosphate transport to low phosphate diet in renal and intestinal brush border membrane vesicles: influence of sodium and pH. Pflugers Arch 1987;409:333–6.PubMedGoogle Scholar
  34. 34.
    Cramer CF, McMillan J. Phosphorus adaptation in rats in absence of vitamin D or parathyroid glands. Am J Physiol 1980;239:G261–5.PubMedGoogle Scholar
  35. 35.
    Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tanaka H etal. Regulation of intestinal Na+- dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 1999;343:705–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Norbis F, Boll M, Stange G, Markovich D, Verrey F, Biber J et al. Identification of a cDNA protein leading to an increased Pi-uptake in Xenopus laevis oocytes. J Membr Biol 1997;156:19–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Wagner GF, Hampong M, Park CM, Copp DH. Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol 1986;63:481–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Madsen KL, Tavernini MM, Yachimec C, Mendrick DL, Alfonso PJ, Buergin M et al. Stanniocalcin: a novel protein regulating calcium and phosphate transport across mammalian intestine. Am J Physiol 1998;274:G96–102.PubMedGoogle Scholar
  39. 39.
    Lu M, Wagner GF, Renfro JL. Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. Am J Physiol 1994;267:R1356–62.PubMedGoogle Scholar
  40. 40.
    Tenenhouse HS. Recent advances in epithelial sodium-coupled phosphate transport. Curr Opin Nephrol Hypertens 1999;8:407–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 1998;95:5372–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Kavanaugh MP, Kabat D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int 1996;49:959–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA. The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem 1994;269:25426–31.PubMedGoogle Scholar
  44. 44.
    Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate co-transporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 1998;95:14564–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Xu H, Bai L, Collins JF, Ghishan FK. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2). Genomics 1999;62:281–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Bai L, Collins JF, Ghishan FK. Cloning and characterization of a type III Na-dependent phosphate co-transporter from mouse intestine. Am J Physiol 2000;279:C1135–43.Google Scholar
  47. 47.
    Shibui A, Tsunoda T, Seki N, Suzuki Y, Sugane K, Sugano S. Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 co-transporter. J Hum Genet 1999;44:190–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2002

Authors and Affiliations

  • T. Yamaguchi
  • T. Sugimoto
  • K. Chihara

There are no affiliations available

Personalised recommendations