Sequence Families with Optimum Aperiodic Mean-Square Correlation Parameters

  • Hans D. Schotten
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)


In this paper, the aperiodic mean-square correlation (AMSQC) parameters of sequence families are investigated. These parameters are widely accepted performance measures for correlation properties of sequences applied in code-division multiple-access (CDMA) systems and other technical fields. The AMSQC parameters of many known families attain the Welch-bound and result in approximately the same values for the auto-and crosscorrelation. Since in many technical applications either the auto-or the crosscorrelation properties are more relevant, the construction of sequence families which, on the one hand, attain the Welch-bound and which, on the other hand, have a wide range of auto-and crosscorrelation parameters is considered in this paper.


Binary Sequence CDMA System Sequence Family Cyclic Phasis Alphabet Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.V. Sarwate and M.B. Pursley. Crosscorrelation properties of pseudorandom and related sequences. Proc. IEEE, 68:593–619, 1980.CrossRefGoogle Scholar
  2. 2.
    M.B. Pursley. Performance evaluation for phase-coded spread-spectrum multiple-access communication — part I: System analysis. IEEE Trans. Commun., COM25:795–799, 1977.CrossRefGoogle Scholar
  3. 3.
    M.B. Pursley and D.V. Sarwate. Performance evaluation for phase-coded spread-spectrum multiple-access communication — part II: Code sequence analysis. IEEE Trans. Commun., COM-25:800–803, 1977.CrossRefGoogle Scholar
  4. 4.
    H.D. Schotten, H. Elders-Boll, and A. Busboom. Optimization of spreading-sequences for DS-CDMA systems and frequency-selective fading channels. In Fifth International Symposium on Spread Spectrum Techniques and Applications ISSSTA ‘88, Sun City, pages 33 - 37, 1998.Google Scholar
  5. 5.
    L.R. Welch. Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory, IT-20: 397 - 399, 1974.MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Sarwate. Sets of complementary sequences. Electron. Left., vol.19, pp. 711–712, 1983.CrossRefGoogle Scholar
  7. 7.
    J. Massey and T. Mittelholzer, Welch’s Bound and sequence sets for code-division multiple-access systems in Sequences II: methods in communication, security, and computer science, pages 63–78. Springer-Verlag, Eds. R. Capocelli, A. De Santis, and U. Vacarro, 1993.Google Scholar
  8. 8.
    D. Sarwate. Meeting the Welch bound with equality. this volume, 1999.Google Scholar
  9. 9.
    H.D. Schotten and J. Ruprecht. On the Optimum Spreading Sequence and Mismatched Filter Design for Cellular CTDMA. In Fourth International Symposium on Spread Spectrum Techniques and Applications ISSSTA ‘86, Mainz, pages 677–682, 1996.Google Scholar
  10. 10.
    I. Oppermann. Orthogonal complex-valued spreading sequences with a wide range of correlation properties. IEEE Trans. Commun., COM-45:1379–1380, 1997.CrossRefGoogle Scholar
  11. 11.
    I. Oppermann and B.S. Vucetic. Complex spreading sequences with a wide range of correlation properties. IEEE Trans. Commun., COM-45:365–375, 1997.CrossRefGoogle Scholar
  12. 12.
    H.D. Schotten. Mean-square correlation parameters of code-sequences in DSCDMA systems. In Proc. IEEE International Symposium on Information Theory ISIT‘97, Ulm, page 486, 1997.Google Scholar
  13. 13.
    H.D. Schotten. Algebraische Konstruktion gut korrelierender Sequenzen and Analyse ihrer Leistungsfähigkeit in Codemultiplex-Systemen. (Algebraic construction of sequences with low correlation and their application in CDMA systems) PhD Thesis, Aachen Univ. of Technology, 1997.Google Scholar
  14. 14.
    H.D. Schotten and H. Elders-Boll. Aperiodic mean-square correlation parameters of binary ℤ4 linear sequences. In Proc. IEEE International Symposium on Information Theory ISIT‘98, Cambridge, page 402, 1998.Google Scholar
  15. 15.
    P.V. Kumar, T. Helleseth, A.R. Calderbank, and A.R. Hammons. Large families of quaternary sequences with low correlation. IEEE Trans. Inform. Theory, IT-42:579 - 592, 1996.MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Bortas and P.V. Kumar. Binary sequences with Gold-like correlation but larger linear span. IEEE Trans. Inform. Theory, IT-40:532 - 537, 1994.Google Scholar
  17. 17.
    H.D. Schotten, B. Liesenfeld, and H. Elders-Boll. Large families of code-sequences for direct-sequence CDMA systems. International Journal of Electronics and Communications (AEU), 49:143–150, 1995.Google Scholar
  18. 18.
    F.W. Sun and H. Leib. Optimal phases for a family of quadriphase sequences. IEEE 71-ans. Inform. Theory, IT-43:1205 - 1217, 1997.MathSciNetGoogle Scholar
  19. 19.
    K. Kärkkäinen. Mean-square cross-correlation as a performance measure for spreading code families. In Proc. IEEE Int. Symp. on Spread Spectrum Techniques and Its Applications ISSSTA’92, Yokohama, pages 147–150, 1992.Google Scholar
  20. 20.
    H.D. Schotten. Bounds on the average interference parameter of binary sequences in DS-CDMA systems. In Proc. IEEE International Symposium on Information Theory and Its Applications ISITA‘94, Sydney, pages 1383–1387, 1994.Google Scholar
  21. 21.
    M.B. Pursley and D.V. Sarwate. Evaluation of correlation parameters for periodic sequences. IEEE Trans. Inform. Theory, IT-23:508–513, 1977.MathSciNetCrossRefGoogle Scholar
  22. 22.
    M.B. Pursley and H.F.A. Roefs. Numerical evaluation of correlation parameters for optimal phases of binary shift-register sequences. IEEE Trans. Commun., COM27:1597–1604, 1979.CrossRefGoogle Scholar
  23. 23.
    T. O’Farrell. Code-Division Multiple-Access (CDMA) Techniques in Optical Fibre Local Area Networks. Manchester University, PhD thesis, 1989.Google Scholar
  24. 24.
    T. O’Farrell. New signature code sequence design techniques for CDMA systems. Electron. Lett., 27:371 - 373, 1991.CrossRefGoogle Scholar
  25. 25.
    J.A. Davis and J. Jedwab. Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes. Technical Report HPL-97–158, Hewlett-Packard Labs., Bristol, 1997.Google Scholar
  26. 26.
    S Golomb et al.Digital Communications with Space Applications. Englewood Cliffs, NJ: Prentice Hall, 1964Google Scholar

Copyright information

© Springer-Verlag London 1999

Authors and Affiliations

  • Hans D. Schotten
    • 1
  1. 1.Institute of Communications EngineeringAachen University of TechnologyAachenGermany

Personalised recommendations