Advertisement

Lifetime Estimation and B-Value (WG1.1, SG4)

  • Sergei Semjonov

Abstract

One of the main goals of COST 246 is to study the reliability of optical fibres. Working Group 1.1 has studied and discussed many aspects of this problem: transmission stability (attenuation changes, polarisation mode dispersion etc.) and mechanical stability (handleability, ageing phenomena, ageing test methods, service environment, coating behaviour and reliability of fusion splices of fibres). They are described in the Chapter 3 - 6 of this book. In this chapter theories for time to failure of the fibre during service as well as mechanical properties and fatigue behaviour of different types of weak spots of fibres are reported.

Keywords

Stress Rate Static Fatigue Initial Strength Weak Spot Round Robin Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Lifetime Estimation and B-Value (WG1.1, SG4)

References

  1. 1.
    C. R. Kurkjian and U. C. Paek, “Single-valued strength of `perfect’ silica fibers,” Appl. Phys. Lett., 42 [3] 251–253 1983.CrossRefGoogle Scholar
  2. 2.
    C. R. Kurkjian, J. T. Krause and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” J. Lightwave Tech., 7 1360–1370 1989.CrossRefGoogle Scholar
  3. 3.
    G. S. Glaesemann, “The mechanical reliability of large flaws in optical fiber and their role in reliability predictions,” Proc. 41st Int. Wire & Cable Symp., 698–704 1992.Google Scholar
  4. 4.
    T. Breuls and T. Svensson, “Strength and fatigue of zirconia induced weak spots in optical fiber,” Proc. Soc. Photo-Opt. Instrum. Eng., 2074 78–82 1993.Google Scholar
  5. 5.
    B. Lin and M. J. Matthewson, “Inert strength of subthreshold and post-threshold Vickers indentations in fused silica optical fibres,” Phil. Mag. A, 74 [5] 1235–1244 1996.CrossRefGoogle Scholar
  6. 6.
    B. Lin, M. J. Matthewson and G. J. Nelson, “Indentation experiments on silica optical fibers,” Proc. Soc. Photo-Opt. Instrum. Eng., 1366 157–166 1990.Google Scholar
  7. 7.
    M. J. Matthewson, B. Lin and A. P. Stanzeski, “Modeling weak optical fiber by using Vickers indentation,” OFC’94 Tech. Digest, 5 245–246 1994.Google Scholar
  8. 8.
    B. Lin, A. P. Stanzeski and M. J. Matthewson, “Modeling of extrinsic defects in silica fibers using Vickers indentations,” Proc. Soc. Photo-Opt. Instrum. Eng., 2611 122–128 1995.Google Scholar
  9. 9.
    T. P. Dabbs and B. R. Lawn, “Strength and fatigue properties of optical glass fibers containing microindentation flaws,” J. Am. Ceram. Soc., 68 [11] 563569 1985.Google Scholar

References

  1. 1.
    Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing”, J. Applied Physics, 53 (7), 1982, pp. 4847–4853.CrossRefGoogle Scholar
  2. 2.
    . Technical Report NO - 17 A (7 March 1997 version), and later version Ed -17 (October -97 version), titled “Technical report on the Power-Law Theory of Optical Fiber Reliability”Google Scholar
  3. 3.
    T. Volotinen et. al., Mechanical Behavior and B-Value of an Abraded Optical Fiber, to be published, Proc. 47th IWCS (1998).Google Scholar
  4. 4.
    S. Semjonov et al., to be published, Proc. 47th IWCS (1998).Google Scholar
  5. 5.
    T. Svensson et al., SPIE Vol. 2290 (1994) 211.CrossRefGoogle Scholar
  6. 6.
    S. Semjonov et al., MRS Vol 531 (1998).Google Scholar
  7. 7.
    M. Bubnov et al., MRS Vol 531 (1998).Google Scholar
  8. 8.
    C. Kurkjian et al., SPIE Vol. 2611 (1995) 56.CrossRefGoogle Scholar
  9. 9.
    T. Hanson et al., J. Mat. Sci. Vol. 32 (1997) 5305.CrossRefGoogle Scholar
  10. 10.
    G. S. Glaesemann, et al., MRS Vol. 531 (1998).Google Scholar
  11. 11.
    P. T. Garvey et al., Proc. 46th IWCS (1997) 883.Google Scholar
  12. 12.
    J. V. Overgaard et al. Proc. 45th IWCS (1996) 928.Google Scholar
  13. 13.
    T. Volotinen, G. Griffioen, M. Gadonna and H. Limberger, Reliability of Optical Fibres and Components, Final Report of COST 246,to be published, Springer-Verlag, London (1999).Google Scholar
  14. 14.
    N. Evanno, Presentation at MRS Spring meeting, Conference DD (1998).Google Scholar
  15. 15.
    J. Armstrong et al., MRS Vol 531 (1998).Google Scholar
  16. 16.
    J. Armstrong et al., Proc. IWCS (1997) 902.Google Scholar
  17. 17.
    M. J. Matthewson et al, MRS Vol 531 (1998).Google Scholar

References

  1. 1.
    E.R. Fuller et al., J. Mat. Sci. Vol 15 (1980) 2282.CrossRefGoogle Scholar
  2. 2.
    S. Sakaguchi et al., J. Mat. Sci., Vol 17 (1982) 1982.CrossRefGoogle Scholar
  3. 3.
    T. Hanson et al., J. Mat. Sci. Vol.32 (1997) 5305.CrossRefGoogle Scholar
  4. 4.
    S. Semjonov et.al., to be published MRS Spring Meeting, DD-conference (1998).Google Scholar
  5. 5.
    M. Bubnov et al., to be published MRS Spring meeting, DD-conference (1998).Google Scholar
  6. 6.
    S. Semjonov et. al., ibid (IWCS 1998).Google Scholar
  7. 7.
    IEC- Technical Report on power-law, ver. May 1998.Google Scholar
  8. 8.
    W. Griffioen et al. SPIE Vol. 1791 (1992) 190.CrossRefGoogle Scholar
  9. 9.
    W. Griffioen, Doctoral Thesis, Eindhoven University of Technology (1994).Google Scholar
  10. 10.
    T. Svensson et al., SPIE Vol. 1791 (1992) 117.CrossRefGoogle Scholar
  11. 11.
    A. Gouronnec et al., Proc. IWCS (1996) 906.Google Scholar
  12. 12.
    C. Kurkjian et al., SPIE Vol. 2611 (1995) 56.CrossRefGoogle Scholar
  13. 13.
    J. Armstrong et al., Proc. IWCS (1997) 902.Google Scholar
  14. 14.
    Y. Mitsunaga et al., Electron. Lett., Vol. 7, No. 16 (1981) 567.CrossRefGoogle Scholar
  15. 15.
    R. C. Bradt et.al., Fractography of Glass, Plenum Press, NewYork (1994). 16 T. Svensson et al., SPIE Vol. 2290 (1994) 211.CrossRefGoogle Scholar
  16. 17.
    A. K. Varashneya, Fundamentals of Inorganic Glasses, Academic Press, Inc., London (1994).Google Scholar
  17. 18.
    G.S.Glaesemann, Proc. IWCS (1992) 698.Google Scholar
  18. 19.
    G.S. Glaesemann, et al., to be published MRS Spring Meeting, DD-conference (1998)Google Scholar

References

  1. 1.
    T.A. Hanson and G.S. Glaesemann, J. Mat. Sci., 32 5305–5311 (1997).CrossRefGoogle Scholar
  2. 2.
    P.T. Harvey, T.A. Hanson, M.G. Estep and G.S. Glaesemann, Proc. IWCS, 883–888 (1997).Google Scholar
  3. 3.
    G.S. Glaesemann, Proc. IWCS, 698–704 (1992).Google Scholar
  4. 4.
    M.M. Bubnov, E. M. Dianov and S.L. Semjonov, Mat.Res. Soc. Symp. 244 97–101 (1992).CrossRefGoogle Scholar
  5. 5.
    D.J. Wissuchek, MRS Proc. #531 (1998).Google Scholar
  6. 6.
    T. Breuls and T. Svensson SPIE, 2074 78 (1994).CrossRefGoogle Scholar
  7. 7.
    C.R. Kurkjian, Mat.Res.Soc. Proc. 531 (1998). Google Scholar
  8. 8.
    Leco, Model M-400-G3, St. Josephs, MI 49085–2396.Google Scholar
  9. 9.
    Nano Instruments, Oak Ridge, TN 37830.Google Scholar
  10. 10.
    Instron, Canton, MA 02021.Google Scholar
  11. 11.
    J. T. Krause, and C. Shute, Adv. Ceram. Matls.,3, 118–121 (1988).Google Scholar
  12. 12.
    G. S. Glaesemann, Proc. SPIE, 2611 38–44 (1995).CrossRefGoogle Scholar
  13. 13.
    C.R. Kurkjian S.L. Semjonov and O.S. Gebizlioglu, Proc. NFOEC, 73–80 (1997).Google Scholar
  14. 14.
    B. Lin and M. J. Matthewson, Phil. Mag., 74 1235–1244 (1996).CrossRefGoogle Scholar
  15. 15.
    M. Muroake and H. Abe, Mechanics and Materials for Electronic Packaging, 1, 141, ASME (1994).Google Scholar
  16. 16.
    C.R.Kurkjian, J.T. Krause and M.J. Matthewson, J. Lightwave Tech. 7 1360–1370 (1989).Google Scholar
  17. 17.
    M.M. Bubnov and S.L. Semjonov, Proc. MRS #531 (1998).Google Scholar
  18. 18.
    D. B. Marshall and B. R. Lawn, J. Am. Ceram. Soc., 63 532 (1980).CrossRefGoogle Scholar
  19. 19.
    B.L. Symonds, R. F. Cook and B.R. Lawn J. Matls,. Sci, 18 1306 (1983).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 1999

Authors and Affiliations

  • Sergei Semjonov

There are no affiliations available

Personalised recommendations