Radial and Uniform Distributions in Vector and Matrix Spaces for Probabilistic Robustness

  • Giuseppe Calafiore
  • Fabrizio Dabbene
  • Roberto Tempo


A number of recent papers focused on probabilistic robustness analysis and design of control systems subject to bounded uncertainty This approach is based on randomized algorithms that require generation of vector and matrix samples. In this paper, we provide theoretical results as well as efficient algorithms for the generation of radial and uniform samples in norm-bounded sets.


Covariance Tempo Doyle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.W. Bai, R. Tempo and M. Fu, “Worst case properties of the uniform distribution and randomized algorithms for robustness analysis,” to appear in Mathematics of Co trol, Signals, and Systems, 1998.Google Scholar
  2. 2.
    B.R. Barmish C.M. Lagoa, “The uniform distribution: a rigorous justification for its use in robustne’ss analysis,” Mathematics of Control, Signals, and Systems, vol. 10, pp. 203–222,1997.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    B.R. Barmish, C.M. Lagoa and R. Tempo, “Radially truncated uniform distribution for probabilistic robustness of control systems,” in Proc. of Amer. Cont. Conf., Albuquerque, New Mexico, 1997.Google Scholar
  4. 4.
    G. Calafiore, F. Dabbene and R. Tempo, “Uniform sample generation in £ balls for probabilistic robustness analysis,” in Proc. of the Conf. on Dec. and Cont., Tampa, Florida, 1998.Google Scholar
  5. 5.
    G. Calafiore, F. Dabbene and R. Tempo, “The probabilistic real stability radius,” Politecnico di Torino, CENS-CNR Technical Report 98–2a, 1998.Google Scholar
  6. 6.
    G. Calafiore, F. Dabbene and R. Tempo, “Uniform distributions in the spectral norm,” Politecnico di Torino, CENS-CNR Technical Report 98–2b, 1998.Google Scholar
  7. 7.
    L. Devroye, Non-Uniform Random Variate Generation. Springer-Verlag, New York, 1986.MATHGoogle Scholar
  8. 8.
    A.K. Gupta, “Characterization of p-generalized normality,” Journal of Multivariate Analysis, vol. 60, pp. 61–71, 1997.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.MATHGoogle Scholar
  10. 10.
    P.P. Khargonekar and A. Tikku, “Randomized algorithms for robust control analysis have polynomial time complexity,” in Proc. of the Conf. on Dec. and Cont., Kobe, Japan, 1996.Google Scholar
  11. 11.
    A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York, 1965.MATHGoogle Scholar
  12. 12.
    L.R. Ray and R.F. Stengel, “A Monte Carlo approach to the analysis of control system Robustness,” Automatica, vol. 29, pp. 229–236, 1993.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    R.Y. Rubinstein, Simulation and the Monte Carlo Method. Wiley, New York, 1981.MATHCrossRefGoogle Scholar
  14. 14.
    E.W. Stacy, “A Generalization of the Gamma distribution,“ Annals of Mathematical Statistics, vol. 33, pp. 1187–1192, 1962.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    R.F. Stengel and L.R. Ray, “Stochastic robustness of linear time-invariant control systems,” IEEE Trans. on Aut. Cont, vol. 36, pp. 82–87, 1991.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    R. Tempo, E.W. Bai and F. Dabbene, “Probabilistic robustness analysis: explicit bounds for the minimum number of samples,” Sys. and Cont. Lett., vol. 30, pp. 237–242, 1997.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    M. Vidyasagar, A Theory of Learning and Generalization with Applications to Neural Networks and Control Systems, Springer-Verlag, Berlin, 1996.Google Scholar
  18. 18.
    M. Vidyasagar, “Statistical learning theory: an introduction and applications to randomized algorithms,“ in Proc. of the Europ. Cont. Conf., Brussels, Belgium, 1997.Google Scholar
  19. 19.
    K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddler River, 1996.MATHGoogle Scholar

Copyright information

© Springer-Verlag London 1999

Authors and Affiliations

  • Giuseppe Calafiore
    • 1
  • Fabrizio Dabbene
    • 2
  • Roberto Tempo
    • 2
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoItaly
  2. 2.Politecnico di TorinoCENS-CNRItaly

Personalised recommendations