Optimisation of a Stator Blade Used in a Transonic Compressor Cascade with Evolution Strategies

  • Markus Olhofer
  • Bernhard Sendhoff
  • Toshiyuki Arima
  • Toyotaka Sonoda
Conference paper

Abstract

The evaluation of fluid dynamic properties of various different structures in aerodynamic design optimisation is a computationally demanding process. For the application of evolutionary algorithms it would therefore be beneficial to restrict the population size to a minimum even if parallel genetic algorithms are employed. In this paper, we will show that specific evolution strategies can be successfully used for design optimisation even in the transonic regime with small population sizes and a full Navier Stokes solver for the evaluation. Furthermore, we analyse the self-adaptation properties of the evolution strategy.

Keywords

Europe Covariance Agram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Vicini and D. Quagliarella. Airfoil and wing design through hybrid optimization strategies. In 16 th Applied Aerodynamics Conference. American Institu of Aeronautics and Astronautics, 1998. AIAA Paper 98–2729.Google Scholar
  2. 2.
    D.J. Doorly. Parallel genetic algorithms for optimization in cfd. In J. Pénaux and G. Winter, editors, Genetic Algorithms in Engineering and Computer Science. Wiley, 1995.Google Scholar
  3. 3.
    S. Obayashi, Y. Yamaguchi, and T. Nakamura. Multiobjective genetic algorithm for multidisciplinary design of transonic wing planform. Journal of Aircraft, 34 (5): 690–693, 1997.CrossRefGoogle Scholar
  4. 4.
    C.M. Fonseca and P.J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms–part II: Application example. IEEE Transactions on Systems, Man and Cybernetics, 28 (1): 38–47, 1998.CrossRefGoogle Scholar
  5. 5.
    Th. Back and H.-P. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1 (1): 1–23, 1993.CrossRefGoogle Scholar
  6. 6.
    B. Sendhoff, M. Kreutz, and W. von Seelen. A condition for the genotype-phenotype mapping: Causality. In Thomas Bäck, editor, Genetic Algorithms: Proceedings of the 7th Int. Conf. (ICGA), pages 73–80. Morgan Kaufmann, 1997.Google Scholar
  7. 7.
    T. Arima, T. Sonoda, M. Shirotori, A. Tamura, and K. Kikuchi. A numerical investigation of transonic axial compressor rotor flow using a low-Reynolds number k-e turbulence model. Journal of Turbomachinery, 121:44–58, 1997. Transactions of the ASME.CrossRefGoogle Scholar
  8. 8.
    H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & sons, New York, 1995.Google Scholar
  9. 9.
    A. Ostermeier. A derandomized approach to self adaptation of evolution strategies. Evolutionary Computation, 2 (4): 369–380, 1994.CrossRefGoogle Scholar
  10. 10.
    N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaption. In Proc. 1996 IEEE Int. Conf. on Evolutionary Computation, pages 312–317. IEEE Press, 1996.CrossRefGoogle Scholar
  11. 11.
    N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 2000. To appear.Google Scholar
  12. 12.
    M. Kreutz, B. Sendhoff, and Ch. Igel. EALib: A C++ class library for evoluti nary algorithms. Institut für Neuroinformatik, Ruhr-Universität Bochum, 1.4 edition, March 1999.Google Scholar
  13. 13.
    M. Olhofer, Y. Yamaguchi, B. Sendhoff, and E. Kürner. Stator blade of axial flow compressor. Japanese Patent No. 348577, December 1999. (in Japanese).Google Scholar

Copyright information

© Springer-Verlag London 2000

Authors and Affiliations

  • Markus Olhofer
    • 1
  • Bernhard Sendhoff
    • 1
  • Toshiyuki Arima
    • 2
  • Toyotaka Sonoda
    • 2
  1. 1.Future Technology ResearchHonda R&D Europe (Germany)Offenbach/MainGermany
  2. 2.Wako Research CentreHonda R&D Co. Ltd.Wako-shi, SaitamaJapan

Personalised recommendations