Spatial Mapping of Evoked Brain Potentials and EEGs to Define Population State Variables

  • Walter J. Freeman
Part of the Perspectives in Neural Computing book series (PERSPECT.NEURAL)


In the 1950s the brain was conceived as a collection of “centers” for the storage and release of stereotypic behaviors, such as feeding, respiration, shivering, sleep, rage, fear, and sexual activity. The experimental strategy for localization of the center for a specific behavior was three-fold: focal ablation to abolish it; focal stimulation to reproduce it; and electrical recording with a depth electrode to observe the neural activity that drove it. This phrenological conception still governs a large proportion of neurobehavioral research. To a large extent it is the main principle used to guide the use of new techniques for brain imaging by fMRI, SPECT, PET, and related methods for measuring metabolic activity and blood flow in brains of subjects engaged in specific behaviors. The aim is to identify complex cognitive functions with the locations colored spots on 2D projections of brain images. Owing to its simplicity this conception has widespread appeal, but it poorly serves thinking about brain organization and activity, and it led me into a series of failed predictions (Freeman 1961a).


Olfactory Bulb Dipole Field Pyramidal Cell Layer Negative Wave Spontaneous Electrical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adrian, E. D. Olfactory reactions in the brain of the hedgehog. J. Physiol., 1942, 100: 459–473.Google Scholar
  2. 2.
    Allen, W. F. Distribution of cortical potentials resulting from insufflation of vapors into the nostrils and from stimulation of the olfactory bulbs and pyriform lobe. Amer. J. Physiol., 1943, 139: 553–555.Google Scholar
  3. 3.
    Berlucchi, C. Ricerche di fine anatomia sul claustrum e sull’ insula del gato. Riv. spero Freniat., 1927, 51: 125–157.Google Scholar
  4. 4.
    Berry, C. M., Hagamen, W. D., and Hinsey, J. C. Distribution of potentials following stimulation of olfactory bulb in cat. J. Neurophysiol., 1952, 15: 139–148.Google Scholar
  5. 5.
    Bishop, G. H. and O’Leary, J. L. The polarity of potentials recorded from the superior colliculus. J. cell. camp. Physiol., 1942, 19: 289–300.CrossRefGoogle Scholar
  6. 6.
    Chang, H.-T. Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J. Neurophysiol., 1951, 14: 1–21.Google Scholar
  7. 7.
    Clare, M. H. and Bishop, G. H. Properties of dendrites; apical dendrites of the cat cortex. EEG clin. Neurophysiol., 1955,7: 85–98.CrossRefGoogle Scholar
  8. 8.
    Fatt, P. Electric potentials occurring around a neurone during its antidromic activation. J. Neurophysiol., 1957,20: 27–60.Google Scholar
  9. 9.
    Freeman, W. J. Oscillating corticonuclear dipole in the basalforebrain of the cat. Science, 1957, 126: 1343–1344.CrossRefGoogle Scholar
  10. 10.
    Fox, C. A., McKinley W. A., and Magoun, H. W. An oscillographic study of olfactory system in cats. J. Neuraphysiol., 1944,7: 1–16.Google Scholar
  11. 11.
    Gesell R. The driving forces of increased breathing. Pp. 221–230 in: Moulton, F. R., ed. Blood, heart, and circulation. Washington, D. C., Science Press, 1940.Google Scholar
  12. 12.
    Hasana, B. Ueber die elektrischen Begleiterscheinungen an der Riechsphare bei der Geruchsempfindung. Pflug. Arch. ges. Physiol., 1934,234: 748–755.CrossRefGoogle Scholar
  13. 13.
    Kaada, B. R. Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cat, and dog. Acta physiol. scand., 1951, 24 (Suppl. 83). See Chap. III: Cortical distribution of potentials evoked by olfactory bulb stimulation in cat and monkey.Google Scholar
  14. 14.
    Landau, W. M. An analysis of the cortical response to antidromic pyramidal tract stimulation in the cat. EEG clin. Neurophysiol., 1956,8: 445–456.CrossRefGoogle Scholar
  15. 15.
    Liberson, W. T. Recent advances in Russian neurophysiology. Ann. Rev. Physiol., 1957, 19: 557–588. (See p. 562).CrossRefGoogle Scholar
  16. 16.
    Lorente de Nó, R. A study of nerve physiology. Stud. Rockefeller Inst. med. Res., 1947, 131, 132.Google Scholar
  17. 17.
    Lorente de Nó, R. Action potential of the motoneurons of the hypoglossus nucleus. J. cell comp. Physiol., 1947,29: 207–287.CrossRefGoogle Scholar
  18. 18.
    Luse, S. A. Electron microscopic observations of the central nervous system. J. Biophys. Biochem. Cytol., 1956, 2: 531–542.CrossRefGoogle Scholar
  19. 19.
    Marshall, W. H., Talbot, S. A., and Ades, H. W. Cortical response of the anesthetized cat to gross photic and electrical afferent stimulation. J. Neurophysiol., 1943,6: 1–15.Google Scholar
  20. 20.
    MacLean, P. D., Horwitz, N. H., and Robinson, F. Olfactory-like responses in pyriform area to nonolfactory stimulation. Yale J. Biol. Med., 1952, 25: 159–172.Google Scholar
  21. 21.
    O’Leary, J. L. Structure of the primary olfactory cortex of the mouse. J. comp. Neural., 1937,67: 1–31.CrossRefGoogle Scholar
  22. 22.
    O’Leary, J. L. and Bishop, G. H. Analysis of potential sources in the optic lobe of duck and goose. J. cell. comp. Physiol., 1943, 22: 73–87.CrossRefGoogle Scholar
  23. 23.
    Papez, J. W. Comparative neurology. New York, Thomas Y. Crowell Co., 1929. xxv, 518 pp.Google Scholar
  24. 24.
    Purpura, D. P. and Grundfest, H. Nature of dendritic potentials and synaptic mechanisms in cerebral cortex of cat. J. Neurophysiol., 1956, 19: 573–595.Google Scholar
  25. 25.
    Ramón y Cajal, S. Studies on the cerebral cortex (limbic structures). Tr. L.M. Kraft. London, LloydLuke, 1955. xi, 179 pp.Google Scholar
  26. 26.
    Shanes, A. M. Frog nerve as generator of current and voltage. J. cell. comp. Physiol., 1947,29: 207–287.CrossRefGoogle Scholar
  27. 27.
    Tasaki, I. Nervous transmission. Springfield, Ill., C. C Thomas, 1953. 164 pp.Google Scholar
  28. 28.
    Ward J. W. Field spread potentials of the olfactory mechanism. A mer. J. Physiol., 1953, 172: 462–470.Google Scholar
  29. 29.
    Wilson, F. N., Macleod, A. G., and Barker, P. S. The distribution of currents of action and injury displayed by heart muscle and other excitable tissue. Ann Arbor, Univ. Of Michigan Press, 1933. vii, 59 pp.Google Scholar

Copyright information

© Springer-Verlag London 2000

Authors and Affiliations

  • Walter J. Freeman
    • 1
  1. 1.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations