Quantum Computation Relative to Oracles

  • Christino Tamon
  • Tomoyuki Yamakami
Part of the Discrete Mathematics and Theoretical Computer Science book series (DISCMATH)


The study of the power and limitations of quantum computation remains a major challenge in complexity theory. Key questions revolve around the quantum complexity classes EQP, BQP, NQP and their derivatives. This paper presents new relativized worlds in which (i) co-RPNQE, (ii) P = BQP and UP = EXP, (iii) P = EQP and RP = EXP, and (iv) EQP ⊈ ∑ 2 P ⋃ ∏ 2 P . We also show a partial answer to the question of whether Almost-BQP = BQP.


Boolean Function Turing Machine Random Oracle Quantum Network Pseudorandom Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Adleman, J. DeMarrais, and M. Huang, Quantum computability, SIAM J. Comput., 26 (1997), 1524–1540.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    T. Baker, J. Gill, and R. Solovay, Relativizations ofthe P=?NP question, SIAM J. Comput., 4 (1975), 431–442.Google Scholar
  3. 3.
    R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower bounds by polynomials, in Proc. 39th Symposium on Foundations of Computer Science, pp.352–361,1998.Google Scholar
  4. 4.
    R. Beigel, Relativized counting classes: relations among threshold, parity, and mods, J. Comput. System Sci. 42 (1991), 76–96.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    R. Beigel, H. Buhrman, and L. Fortnow, NP might not be as easy as detecting unique solutions, in Proc. 30th IEEE Symposium on Theory of Computing, pp.203–208,1998.Google Scholar
  6. 6.
    P. Benioff, The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Statistical Physics, 22 (1980), 563–591.MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Berthiaume and G. Brassard, Oracle quantum computing, Journal of Modern Optics, 41 (1994), 2521–2535.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997),1411–1473.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    C.H. Bennett and J. Gill, Relative to a random oracle A, PA ≠ NPA ≠cpNPA with probability 1, SIAM J. Comput., 10 (1981),96–113.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    C.H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput., 26 (1997),1510–1523.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    G. Brassard and P. Høyer, An exact quantum polynomial-time algorithm for Simon’s problem, in Proc. 5th Israeli Symposium on Theory of Computing and Systems, pp.12–23, 1997.Google Scholar
  12. 12.
    H. Buhrman and L. Fortnow, One-sided versus two-sided error in probabilistic computation, in Proc. 16th Symposium on TheoreticalAspects of Computer Science, Lecture Notes in Computer Science, Vol.1563, pp.100–109, 1999.MathSciNetGoogle Scholar
  13. 13.
    D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. Roy. Soc. London, Ser.A 439 (1992),553–558.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    R. Feynman, Simulating Physics with computers, in Int. J. Theoretical Physics, 21 (1982),467–488.MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Fenner, F. Green, S. Homer, and R. Pruim, Determining acceptance probability for a quantum computation is hard for PH, in Proc. 6th Italian Conference on Theoretical Computer Science, World-Scientific, Singapore, pp.241–252, 1998.Google Scholar
  16. 16.
    L. Fortnow and J. Rogers, Complexity limitations on quantum computation, in Proc. 13th Conference on Computational Complexity, pp.202–209, 1998.Google Scholar
  17. 17.
    M. Furst, J. Saxe, and M. Sipser, Parity, circuits and the polynomial-time hierarchy, Math. Syst. Theory, 17 (1984), 13–27.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    L. Fortnow and T. Yamakami, Generic separations, J. Comput. System Sci., 52 (1996),191–197.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    F. Green, Lower bounds for depth-three circuits with equals and mod-gates, in Proc. 12th Annual Symposium on Theoretical Aspect of Computer Science, Lecture Notes in Computer Science, Vol.900, pp.71–82, 1995.CrossRefGoogle Scholar
  20. 20.
    J.T. Håstad, Computational Limitations for Small-Depth Circuits, The MIT Press, 1987.Google Scholar
  21. 21.
    E. Hemaspaandra, L.A. Hemaspaandra, and M. Zimand, Almost-everywhere superiority for quantum polynomial time. Technical Report TR-CS-99-720, University of Rochester. See also ph-quantl9910033.Google Scholar
  22. 22.
    K. Ko and H. Friedman, Computational complexity of real functions, Theor. Comput. Sci., 20 (1982), 323–352.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    K. Ko, Some observations on the probabilistic algorithms and NP-hard problems, Inform. Process. Lett., 14 (1982), 39–43.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    K. Ko, Separating and collapsing results on the relativized probabilistic polynomial-time hierarchy, J. Assoc. Comput. Mach., 37 (1990), 415–438.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    S.A. Kurtz, A note on randomized polynomial time, SIAM J. Comput., 16 (1987), 852–853.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    H. Nishimura and M. Ozawa, Computational complexity of uniform quantum circuit families and quantum Turing machines, manuscript, 1999. See also LANL quant-ph/9906095.Google Scholar
  27. 27.
    N. Nisan and M. Szegedy, On the degree of Boolean functions as real polynomials, Computational Complexity, 4 (1994),301–313.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    N. Nisan and A. Wigderson, Hardness and randomness, J. Comput. System Sci., 49 (1994), 149–167.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.Google Scholar
  30. 30.
    D. Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), 1340–1349.Google Scholar
  31. 31.
    P.W. Shor, Polynomial-time algorithms for integer factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26 (1997), 1484–1509.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    T. Yamakami, A foundation of programming a multi-tape quantum Turing machine, in Proc. 24th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol.1672, pp.430–441, 1999. See also LANL quant-ph/990684.CrossRefGoogle Scholar
  33. 33.
    T. Yamakami, Analysis of quantum functions, in Proc. 19th International Conference on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, Vol.1738, pp.407–419, 1999. See also LANL quant-ph/9909012.MathSciNetCrossRefGoogle Scholar
  34. 34.
    T. Yamakami and A.C. Yao, NQPc = co-C=P. Inform. Process. Lett., 71 (1999),63–69.Google Scholar

Additional References

  1. 1.
    L. Fortnow, Personal communication, October 2000.Google Scholar
  2. 2.
    F. Green and R. Pruim, Relativized separation of EQP from PNP, manuscript, 2000.Google Scholar

Copyright information

© Springer-Verlag London 2001

Authors and Affiliations

  • Christino Tamon
    • 1
  • Tomoyuki Yamakami
    • 2
  1. 1.Department of Mathematics and Computer ScienceClarkson UniversityPotsdamUSA
  2. 2.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations