Quantisation Errors in Digital Implementations of Fuzzy Controllers

  • Inés del Campo
  • José M. Tarela
  • Koldo Basterretxea
Part of the Advances in Industrial Control book series (AIC)


Fuzzy Logic Controllers (FLCs) have proven useful in the control of complex and nonlinear processes. Unlike conventional control, which is based on a precise model of a process, fuzzy control is able to handle linguistic information in the form of IF-THEN rules. These rules usually encapsulate the experience of human operators and engineers. At present, most FLCs are implemented digitally. Microprocessors, digital signal processors (DSPs), and application specific integrated circuits (ASICs) are used to cope with real time fuzzy control. Therefore, the quantisation noise due to the finite length of digital words is to be taken into account in designing fuzzy systems. Digital implementations of FLCs involve three main types of quantisation errors: the analogue-to-digital (A/D) errors, the membership function errors, and the arithmetic errors. The consequences of these errors on the behaviour of a typical FLC are analysed and the problem of the selection of a digital format for fuzzy information is addressed.


Membership Function Fuzzy System Fuzzy Control Fuzzy Controller Quantisation Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mamdani, E.H., Assilian, S. (1975) A fuzzy logic controller for a dynamic plant. Int. J. Man-Machine Std.7,1–13MATHCrossRefGoogle Scholar
  2. 2.
    Kickert, W. J. M, Van Nauta LemkeH.R. (1976) Application of a fuzzy controller in a warm water plant. Automatica 12, 301–308CrossRefGoogle Scholar
  3. 3.
    Sugeno, M. (ed.) (1985) Industrial Applications of Fuzzy Control. Elsevier Science Publishers B. V. (North-Holland), The NetherlandsGoogle Scholar
  4. 4.
    Hellendoorn, H., Palm, R (1994) Fuzzy system technologies at Siemens R&D. Fuzzy Sets Syst.63, 245–269CrossRefGoogle Scholar
  5. 5.
    Bonissone, P., Badami, V. et al. (1995) Industrial applications of fuzzy logic at General Electric. Proc. IEEE83, 450–465CrossRefGoogle Scholar
  6. 6.
    van der Wal, A. J. (1995) Application of fuzzy logic control in industry. Fuzzy Sets Syst.74, 33–41CrossRefGoogle Scholar
  7. 7.
    Bonissone, P., Chen, Y. et al. (1999) Hybrid soft computing systems: Industrial and commercial applications. Proc. IEEE87,1641–1667CrossRefGoogle Scholar
  8. 8.
    Jamshidi, M. (1994) On software and hardware applications of fuzzy logic, in Fuzzy Sets, Neural Networks and Soft Computing. Van Nostrand Reinhold, New York, 396–430Google Scholar
  9. 9.
    Costa, A., de Gloria, A. et al. (1995) Hardware solutions for fuzzy control. Proc. IEEE83, 422–434CrossRefGoogle Scholar
  10. 10.
    Kandel, A., Langholz, G. (eds.) (1998) Fuzzy Hardware: Architectures and Applications. Kluwer Academic Publishers, USAGoogle Scholar
  11. 11.
    Togai, M., Watanabe, H. (1986) Expert system on a chip: An engine for real-time approximate reasoning. IEEE Expert Syst. Mag.1, 55–62Google Scholar
  12. 12.
    Lim, M., Takefuji, Y. (1990) Implementing fuzzy rule-based systems on silicon chip. IEEE Expert Syst. Mag.5, 31–45Google Scholar
  13. 13.
    Samoladas, V., Petrou, L. (1994) Special-purpose architectures for fuzzy logic controllers. Microprocessimg and Microprogramming40, 275–289CrossRefGoogle Scholar
  14. 14.
    Eichfeld, H., Klimke, M. (1995) A General-purpose fuzzy inference processor. IEEE Micro15, 12–17CrossRefGoogle Scholar
  15. 15.
    Ascia, G., Catania, A. et al. (1996) A reconfigurable parallel architecture for fuzzy processor. Information Sciences88, 299–315CrossRefGoogle Scholar
  16. 16.
    Patyra, M. J., Grantner, J. L., Koster, K. (1996) Digital fuzzy logic controller: Design and implementation. IEEE Trans. Fuzzy Syst.4, 439–459CrossRefGoogle Scholar
  17. 17.
    del Campo, I., Callao, R., Tarela, J. M. (1998) Automatic implementation of different inference architectures for fuzzy control on PLDs. Computers and Electrical Engineering24, 113–121CrossRefGoogle Scholar
  18. 18.
    Ying, H., Silver, W., Buckley, J. J. (1990) Fuzzy control theory: A nonlinear case. Automatica26, 513–520MATHCrossRefGoogle Scholar
  19. 19.
    Hwang, G. C., Lin, S. C. (1992) A stability approach to fuzzy control design for nonlinear systems. Fuzzy Sets Syst.48, 279–287MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Wang, H. O., Tanaka, K., Griffin, M. F. (1996) An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst.4, 14–23CrossRefGoogle Scholar
  21. 21.
    Chen, B., Tseng, C, Uang, H. (2000) MixedH2/H 00fuzzy output feedback control design for nonlinear dynamic systems: An LMI approach. IEEE Trans. Fuzzy Syst.8, 249–265CrossRefGoogle Scholar
  22. 22.
    del Campo, I., Tarela, J. M. (1999) Consequences of the digitization on the performance of a fuzzy logic controller. IEEE Trans. Fuzzy Syst.7, 85–92CrossRefGoogle Scholar
  23. 23.
    Zadeh, L. A. (1965) Fuzzy sets. Inform. Control8, 338–353MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Zadeh, L. A. (1968) Fuzzy algorithms. Inform. Control12, 94–102MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Dubois, D., Prade, H. (1980) Fuzzy Sets and Systems. Theory and Applications. Academic Press, LondonMATHGoogle Scholar
  26. 26.
    Klir, G., Folger, T. (1988) Fuzzy Sets, Uncertainty, and Information. Prentice Hall International, LondonGoogle Scholar
  27. 27.
    Zimmerman, H. (1990) Fuzzy Set Theory—and its Applications, 2nd edition. Kluwer Academic Pub., BostonGoogle Scholar
  28. 28.
    Kosko, B. (1992) Neural Networks and Fuzzy Systems. Prentice Hall, New JerseyMATHGoogle Scholar
  29. 29.
    Pedrycz, (1989) Fuzzy control and fuzzy systems. John Wiley & Sons, ChichesterMATHGoogle Scholar
  30. 30.
    Lee, C. C. (1990) Fuzz logic in control systems: Fuzzy logic controller—Part I. IEEE Trans. Syst., Man, Cybern.20, 404–418MATHCrossRefGoogle Scholar
  31. 31.
    Lee, C. C. (1990) Fuzz logic in control systems: Fuzzy logic controller—Part II. IEEE Trans. Syst., Man, Cybern.20, 419–435MATHGoogle Scholar
  32. 32.
    TeranoT., Asai, K., Sugeno, M. (1991) Fuzzy Systems Theory and its Applications. Academic Press, LondonGoogle Scholar
  33. 33.
    Mendel, J. M. (1995) Fuzzy logic systems for engineering: A tutorial. Proc. IEEE83, 345–377CrossRefGoogle Scholar
  34. 34.
    Sugeno, M., Yasukawa, T. (1993) A Fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst.1, 7–31CrossRefGoogle Scholar
  35. 35.
    JangJ.S., Sun, C. T., Mizutani, E. (1997) Neuro-Fuzzy and Soft Computing. A computational Approach to Learning and Machine Intelligence. Prentice Hall, USAGoogle Scholar
  36. 36.
    Hollstein, T., Halgamuge, S. K., Glesner, M. (1996) Computer-aided design of fuzzy system based on generic VHDL. IEEE Trans. Fuzzy Syst.4, 403–417CrossRefGoogle Scholar
  37. 37.
    SurmannH., Ungering, A. P. (1995) Fuzzy rule-based systems on general purpose processors. IEEE Micro 15, 40–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2001

Authors and Affiliations

  • Inés del Campo
  • José M. Tarela
  • Koldo Basterretxea

There are no affiliations available

Personalised recommendations