Tephrochronology and its Application to Late Quaternary Environmental Reconstruction, with Special Reference to the North Atlantic Islands

  • Andrew J. Dugmore
  • Guorún Larsen
  • Anthony J. Newton
Part of the Lecture Notes in Statistics book series (LNS, volume 177)


This chapter offers a review of the current state of the art in tephro-chronology. This type of chronology building relies on chemically identifiable tephra deposits created by volcanic eruptions. Identifiable tephra can be spread over large areas and are often found on archaeological sites and in lake sediments, peat deposits and ice cores. Thus, tephras can be used to synchronize deposits at a variety of locations and if reliable dates can be obtained for them, tephrochronology can be used to help build chronologies in a range of disciplines. For many years, tephra have been used to provide spot dates at single sites, but much of the potential for 3D reconstructions and spatial analysis of pat terns of change through time have yet to be realized. The chapter discusses the potential for development of suitable formal chronology building tools and highlights the kinds of research problems that need to be tackled.


Soil Erosion Tephra Layer Volcanic System North Atlantic Region Tephra Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Norton, A.A., Ulrich, R.K., Bush, R.L., Tarbell, T.D.(1999). Astrophys,518, 123.CrossRefGoogle Scholar
  2. Baillie, M. G. L. (1989). Hekla 3: how big was it? Endeavour, 13,78- 81.CrossRefGoogle Scholar
  3. Baillie, M. G. L. (1998). Bronze age myths expose archaeological shortcom-ings? Antiquity, 72, 425-4 27.Google Scholar
  4. Boygle, J. (1998). A lit tle goes a long way: discovery of a new mid-Holocene tephra in Sweden. Boreas, 27, 195-199.CrossRefGoogle Scholar
  5. Bradwell, T. (2001). A new lichenometric dating curve for southeast Iceland. Geografiska Annaler, 83A, 91-101.CrossRefGoogle Scholar
  6. Buckland, P. C., Dugmore, A. J. and Edwards, K. J. (1997). Bronze Age myths? Volcanic act ivity and human response in the Mediterranean and North Atlantic region. Antiquity, 72, 424-432.Google Scholar
  7. Connell, A. (1846). Analysis of the volcanic dust which fell in the Orkney Is-lands on the 2nd of September 1845. Edinburgh New Philosophical Journal,40, 217-220.Google Scholar
  8. Crumley, C. (1994). Historical ecology: a multidimensional ecological ori-entation. In C. Crumley (ed.), Historical ecology: cultural knowledge and changing landscapes, School of American Research, Sant a Fe.Google Scholar
  9. Davies, S. M., Turney, C. S. M. and Lowe, J. J. (2001). Identification and sig-nificance of a visible, basalt-ri ch Vedde Ash layer in a Late-glacial sequence on the Isle of Skye, Inner Hebrides, Scotland. Journal of Quat ernary Sci-ence, 16,99-10 5.Google Scholar
  10. Dugmore, A. J. (1989). Tephrochronological studies of Holocene glacier fluc-tuat ions in south Iceland. In J. Oerlemans (ed.), Glacier fluctuat ions and climatic change, Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  11. Dugmore, A. J. and Buckland, P. C. (1991). Tephrochronology and late Holocene soil erosion in South Iceland. In J. Maizels and C. Caseldine (eds.), Environmental change in Iceland, Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  12. Dugmore, A. J. and Erskine, C. C. (1994). Local and regional patterns of soil erosion in southern Iceland. Miinchener Geographische Abhandlungen, 13,63- 79.Google Scholar
  13. Dugmore, A. J., Newton, A. J., Edwards, K. J., Larsen, G., Blackford, J. J. and Cook, G. T. (1996). Long-distance marker horizons from small-scale eruptions: some British tephra deposits from the AD 1510 eruption of Hekla, Iceland. Journal of Quaternary Science, 11,511-516.CrossRefGoogle Scholar
  14. Dugmore, A. J., Newton, A. J. and Larsen, G. (1995a). Seven tephra isochrones in Scotland. Th e Holocene, 5, 257-266.CrossRefGoogle Scholar
  15. Dugmore, A. J., Newton, A. J., Larsen, G. and Cook, G. T. (2000). Teph-rochronology, environmental change and the Norse colonisat ion of Iceland. Environmental Archaeology, 5, 21-34.CrossRefGoogle Scholar
  16. Dugmore, A. J., Shore, J. S., Cook, G. T., Newton, A. J., Edwards, K. J. and Larsen, G. (1995b). Radiocarb on dating tephra layers in Britain and Iceland. Radiocarbon, 37, 379-388.Google Scholar
  17. Einarsson, E. H., Larsen, G. and Th6r arinsson, S. (1980). The Solheimar tephra layer and the Katla erupt ion of c. 1357. Ac ta Naturalia Islandica, 28, 1-2 4.Google Scholar
  18. Froggatt, P. C. and Lowe, D. J. (1990). A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age. New Zealand Journal of Ge-ology and Geophys ics, 33, 88- 99.Google Scholar
  19. Gronvold, K., Oskarsson, N., Johnson, S. J., Clausen, H. B., Hammer, C. U., Bond, G. and Bard, E. (1995). Tephra layers from Iceland in th e Greenland GRIP ice core corr elated with oceanic and land based sediments. Earth and Planetary Science Lett ers, 135, 149-155.CrossRefGoogle Scholar
  20. Haflidason, H., Eirfksson, J. and Kreveld, S. (2000). The tephrochronology of Iceland and the North Atlanti c region during th e middle and late Quater- nary: a review. Journal of Quat ernary Sc ience, 15, 3-22.CrossRefGoogle Scholar
  21. Hall, V. A. and Pilcher, J. R. (2002). Late Quaternary Icelandic tephras in Ireland and Great Britain: det ection, characterisation and usefulness. The Holocene, 12, 223-230.Google Scholar
  22. Hammer, C. U., Clausen, H. B. and Dansgaard, W. (1980). Greenland icesheet evidence of postglacial volcanism and its climatic impact. Nature, 288,230-235.CrossRefGoogle Scholar
  23. Hunt, T. L. and Kirch, P. V. (1997). The historical ecology of Ofu island, American Samoa 3000 BP to th e present. In P. V. Kirch and T. L. Hunt (eds.), Historical ecology in the Pacific Islands, Yale University Press, Newhaven, CT.Google Scholar
  24. Jakobsson, S. P. (1979). Petrology of recent basalts of th e Eastern Volcanic Zone, Iceland. Acta Naturalia Islandica, 26, 1-103.Google Scholar
  25. Johannessen, H., Flores, R. M. and Jonsson, J. (1981). A short account of the Holocene tephrochronology of th e Snaefellsjokull cent ral volcano, Western Iceland. J6kull, 31, 23-30.Google Scholar
  26. Kirkbride, M. P. and Dugmore, A. J. (2001). Can the late ‘Lit tle Ice Age’ glacial maximum in Iceland be dated by lichenometry? Climatic Change, 48,151-167.CrossRefGoogle Scholar
  27. Lar sen, G. (1979). Urn aldur Eldgjahrauna (Tephrochronological dating of the Eldgja lavas in south Iceland). Natturujraedingurinn, 49, 1-26.Google Scholar
  28. Larsen, G. (1981). Tephrochronology by microprobe glass analysis. In S. Self and R. S. J. Sparks (eds.), Tephra studies, D. Reidel, Dordrecht, 95-102.CrossRefGoogle Scholar
  29. Larsen, G. (1984). Recent volcanic history of the Veidivotn fissure swarm, south Iceland - an approach to volcanic risk assessment. Journal of Vol-canology and Geothermal Research, 22, 33-58.CrossRefGoogle Scholar
  30. Larsen, G. (2000). Holocene erupt ions within the Katla volcanic system, south Iceland: characteristics and environmental impact. Jokull, 49, 1-29.Google Scholar
  31. Lars en, G., Dugmore, A. J. and Newton, A. J. (1999). Geochemistry of his- torical age silicic tephras in Iceland. The Holocene, 9,463-471.CrossRefGoogle Scholar
  32. Larsen, G., Gudmundsson, M. T. and Bjornsson, H. (1998). Eight centuries of periodic volcanism at th e center of the Icelandic hotspot revealed by glacier tephrostratigraphy. Geology, 26, 943-946.CrossRefGoogle Scholar
  33. Lars en, G., Newton, A. J., Dugmore, A. J. and Vilmundardottir, E. G. (2001). Geochemi stry, disp ersal, volumes and chronology of Holocene silicic tephra layers from the Katla volcanic system, Iceland. Journal of Quaternary Science, 16, 119-132.CrossRefGoogle Scholar
  34. Larsen, G. and Thorarinsson, S. (1977). H4 and other acid Hekla tephra layers. Jjjkull, 27, 28-46.Google Scholar
  35. Lowe, D. J. (1988). Stratigraphy, age, composition, and correlation of late Quaternary tephras interbedded with organic sediments in Waikato lakes, North Island, New Zealand. New Zealand Journal of Geology and Geo-phys ics, 31, 125-165.CrossRefGoogle Scholar
  36. Lowe, D. J. (2000). Upbuilding pedogenesis in multisequal tephra-derived soils in the Waikato region. In J. A. Adams and A. K. Metherell (eds.), Soil 2000: new horizons for a new century. New Zealand Society of Soil Science, Australian and New Zealand Second Joint Soils Conference Volume 2: Oral Papers. 3-8 December 2000, Lincoln University, 183-184.Google Scholar
  37. Lowe, D. J. and Hunt, J. B. (2001). A summary of terminology used in tephra-related studies. In E. T. Juvigne and J.-P. Raynal (eds.), Tephras: chronology and archaeology, Goudet, France, LesDossiers de l'Archeo-Logis, 1, 17-22.Google Scholar
  38. Machida, H. (1980). Tephra and its implications with regard to the Japanese Quaternary period. In T. A. of Japanese Geographers (ed.), Geography of Japan, Teikoku-Shoin, Tokyo.Google Scholar
  39. Mangerud, J., Fumes, H. and Johansen, J. (1986). A 9000 year old ash bed on the Faroe Islands. Quaternary Research, 26, 262-265.CrossRefGoogle Scholar
  40. Mangerud, J., Lie, S. E., Fumes, H., Kristiansen, L. and Lomo, L. (1984). A Younger Dryas ash bed in western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. Quaternary Research, 21,85-104.CrossRefGoogle Scholar
  41. Manville, V. (2001). Environmental impacts of large-scale explosive rhyolitic eruptions in the central North Island. In R. T. Smith (ed.), Fieldtrip guides, Geological Society of New Zealand annual conference 2001, Geological So-ciety of New Zealand, Miscellaneous Publication, 110 B, 1-19.Google Scholar
  42. Mohn, H. (1877). Askeregnen den 29de-30te Marts 1875 (The tephra fall on 29-30 March 1875). Norske Videnskabers Selskabs Forhandlinger (Royal Norwegian Society of Sciences and Letters), 10, 1-12.Google Scholar
  43. Newnham, R. M. and Lowe, D. J. (1999). Testing the synchroneity of pollen signals using tephrostratigraphy. Global and Planetary Change, 21, 113-128.CrossRefGoogle Scholar
  44. Pilcher, J., Hall, V. A. and McCormac, F. G. (1995). Dates of Holocene Icelandic volcanic eruptions from tephra layers in Irish peats. The Holocene,5, 103-110.CrossRefGoogle Scholar
  45. Pilcher, J., Hall, V. A. and McCormac, F. G. (1996). An outline tephro-chronology for the Holocene of the North of Ireland. Journal of QuaternaryScience, 11, 485-494.Google Scholar
  46. Pyle, D. M. (1989). Ice core acidity peaks, retarded tree growth and putative eruptions. Archaeometry, 31, 88-91.CrossRefGoogle Scholar
  47. Radice, B. (1969). The letters of the Younger Pliny. Penguin Books, Har-mondsworth, England.Google Scholar
  48. Saemundsson, K. (1991). Jardfraedi Kroflukerfisins (Geology of the Krafla volcanic system). Nattura Myvatns, Reykjavik, Hid islenska natturufraed-ifelag, 24-95.Google Scholar
  49. Salmi, M. (1948). The Hekla ashfalls in Finland, AD 1947. Suomen Geologinen Seura, 21, 87-96.Google Scholar
  50. Shane, P. (2000). Tephrochronology: a New Zealand case study. Earth Science Reviews, 49, 223-259.CrossRefGoogle Scholar
  51. Sigurdsson, H., Carey, S., Cornell, W. and Pescatore, T. (1985). The eruption of Vesuvius in AD 79. National Geographic Research, 1, 332-387.Google Scholar
  52. Simkin, T. and Siebert, L. (1994). Volcanoes of the world. Geoscience Press, Tucson, AZ, second edn.Google Scholar
  53. Simpson, L. A., Dugmore, A. J., Thomson, A. and Vesteinsson, O. (2001). Crossing the thresholds: human ecology and historical patterns of landscape degradation. Catena, 42, 175-192.CrossRefGoogle Scholar
  54. Sparks, R. S. J., Wilson, L. and Sigurdsson, H. (1981). The pyroclastic deposit of the 1875 eruption of Askja, Iceland. Philosophical Transactions of the Royal Society of London Series A, 299, 241-273.CrossRefGoogle Scholar
  55. Sugden, D. E., Marchant, D. R., Potter, N., Souchez, R. A., Denton, G. H., Swisher, C. C. and Tison, J. L. (1995). Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412-414.CrossRefGoogle Scholar
  56. Thorarinsson, S. (1944). Tefrokronologiska studier pa Island. Geografiska Annaler, 26,1-217.CrossRefGoogle Scholar
  57. Thorarinsson, S. (1954). The tephrafall from Hekla on March 29th 1947. The eruption of Hekla 1947-1948, II. H. F. Leiftur, Reykjavik.Google Scholar
  58. Thorarinsson, S. (1958). The Oreefajokull eruption of 1362. Acta Naturalia Islandica, 2, 1-99.Google Scholar
  59. Thorarinsson, S. (1961). Uppblastur aIslandi Iljosi oskulagarannsokna (Wind erosion in Iceland. A tephrochronological study). Arsrit Sk6grrektarjelags islands, 1961, 17-54.Google Scholar
  60. Thorarinsson, S. (1967). The eruptions of Hekla in historical times. The eruption of Hekla 1947-1948, I. H. F. Leiftur, Reykjavik.Google Scholar
  61. Thorarinsson, S. (1981). The application of tephrochronology in Iceland. In S. Self and R. S. J. Sparks (eds.), Tephra studies, D. Reidel, Dordrecht, 109-134.CrossRefGoogle Scholar
  62. Trail! (1845). On the recent eruption of Hecla, and the volcanic shower in Orkney. Proceedings of the Royal Society of Edinburgh, 2, 56-57.Google Scholar
  63. Van den Bogaard, C. and Schminke, H.-V. (2002). Linking the North Atlantic to central Europe: a high resolution Holocene tephrochronological record from northern Germany. Journal of Quaternary Science, 17, 3-20.CrossRefGoogle Scholar
  64. Walker, G. P. L. (1980). The Taupo plinian pumice: product of the most pow-erful known (ultraplinian) eruption? Journal of Volcanology and Geother-mal Research, 8, 69-84.CrossRefGoogle Scholar
  65. Wastegard, S., Turney, C. S. M., Lowe, J. J. and Roberts, S. J. (2000a). The Vedde Ash in NW Europe: distribution and geochemi stry. Boreas, 29, 72-78.CrossRefGoogle Scholar
  66. Wastegard, S., Wohlfarth, B., Subetto, D. A. and Sapelko, T. V. (2000b). Extending the known distribution of the Younger Dryas Vedde Ash into north western Russia. Journal of Quaternary Science, 15,581-586.CrossRefGoogle Scholar
  67. Westgate, J. A. and Gorton, M. P. (1981). Correlation techniques in tephras-tudies. In S. Self and R. S. J. Sparks (eds.), Tephra studies, D. Reidel, Dordrecht, 73-94.CrossRefGoogle Scholar
  68. Westgate, J. A.,Walter, R. C. and Naeser, N. (eds.) (1992). Tephrochronology: stratigraphic appl ications of tephra, vol. 13 and 14. Special Volumes of Quaternary International.Google Scholar
  69. Zielinski, G. A., Germani, M. S., Larsen, G., Baillie, M. G. L., Whitlow, S., Twickler, M. S. and Taylor, K. (1995). Evidence of the Eldgja (Iceland) eruption in the GISP2 Greenland ice core: relationship to eruption processes and climatic conditions in the tenth century. The Holocene, 5, 129-140.CrossRefGoogle Scholar
  70. Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Gronvald, K., Germani, M. S., Whittlow, S., Twicker, M. S. and Taylor, K. (1997). Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores. Journal of Geophysical Research, 102, 26625-26640.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2004

Authors and Affiliations

  • Andrew J. Dugmore
  • Guorún Larsen
  • Anthony J. Newton

There are no affiliations available

Personalised recommendations