Skip to main content

Applications of Formal Model Choice to Archaeological Chronology Building

  • Chapter
Tools for Constructing Chronologies

Part of the book series: Lecture Notes in Statistics ((LNS,volume 177))

Summary

This chapter provides an overview of a topic that is likely to become increasingly important as greater numbers of researchers adopt formal statistical models for constructing chronologies. Other chapters in this volume (1, 2, 3, 10 and 11) use single statistical models, but in the future, as researchers attempt to draw together coherently information from different sources, they will almost certainly develop several alternative models for a single problem. Different statistical models may, however, produce very different interpretations of the same data and thus give rise to conflicting reconstructions of the past. In such situations, we need a robust way to investigate which models are best supported by the data. This chapter outlines recent developments in the application of formal Bayesian model choice techniques to archaeological chronology building and illustrates these tools using two examples, one from absolute and the other from relative chronology building problems. A particular advantage of Bayesian model choice techniques lies in their ability to compare widely different models based on differing assumptions and prior information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin, M. (1997). The calibration of P-values, posterior Bayes factors and the AlC from the posterior distribution of the likelihood. Statistics and Computing, 7, 253–261.

    Google Scholar 

  • Baxter, M. J. (1994). Exploratory multivariate analysis in archaeology. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Buck, C. E., Cavanagh, W. G. and Litton, C. D. (1996). Bayesian approach to interpreting archaeological data. John Wiley, Chichester.

    Google Scholar 

  • Buck, C. E. and Sahu, S. K. (2000). Bayesian models for relative archaeological chronology building. Applied Statistics, 49, 423–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, M. H., Shao, Q. M. and Ibrahim, J. G. (2000). Monte Carlo methods in Baye sian computation. Wiley, New York.

    MATH  Google Scholar 

  • DiCiccio, T. J., Kass, R. E., Raftery, A. and Wasserman, L. (1997). Computing Bayes factors by combining simulation and asymptotic approximations. Journal of the American Statistical Association, 92, 903–915.

    Article  MathSciNet  MATH  Google Scholar 

  • Geisser, S. and Eddy, W. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E. (1996). Model determination using sampling based methods. In W. R. Gilks, S. Richardson and D. J. Spiegelhalter (eds.), Markov chain Monte Carlo in practice, Chapman and Hall.

    Google Scholar 

  • Gelfand, A. E. and Ghosh, S. (1998). Model choice: a minimum posterior predictive loss approach. Biometrika, 85, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Gilks, W., Richardson, S. and Spiegelhalter, D. (eds.) (1996). Markov chain Monte Carlo in practice. Chapman and Hall, London.

    MATH  Google Scholar 

  • G6mez Portugal Aguilar, D., Litton, C. D. and O’Hagan, A. (2002). Novel statistical model for a piece-wise linear radiocarbon calibration curve. Radiocarbon, 44, 195–212.

    Google Scholar 

  • Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log linear model approach in the analysis of contingency tables. International Statistical Review, 54, 243–309.

    Article  MathSciNet  MATH  Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobi, R. M., Laxton, R. R. and Switsur, V. R. (1980). Seriation and dating of mesolithic sites in southern England. Revue d’Archeotnetrie, 4, 165–173.

    Google Scholar 

  • Kass, R. E. and Raftery, A. E. (1995). Bayes factors and model uncertainty. Journal of the American Statistical Association, 90, 773–795.

    Article  MATH  Google Scholar 

  • Kendall, D. G. (1971). Seriation from abundance matrices. In F. R. Hodson, D. G. Kendall and P. Tautu (eds.), Mathematics in the archaeological and historical sciences, Edinburgh University Press, Edinburgh, 215–252.

    Google Scholar 

  • Laud, P. W. and Ibrahim, J. G. (1995). Predictive model selection. Journal of the Royal Statistical Society, 57, 247–262.

    MathSciNet  MATH  Google Scholar 

  • Laxton, R. R. (1976). A measure of pre-Q-ness with applications to archaeology. Journal of Archaeological Science, 3, 43–54.

    Article  Google Scholar 

  • Nicholls, G. and Jones, M. (2001). Radiocarbon dating with temporal order constraints. Applied Statistics, 50, 503–521.

    Article  MathSciNet  MATH  Google Scholar 

  • Reece, R. (1994). Are Bayesian statistics useful to archaeological reasoning? Antiquity, 68, 848–850.

    Google Scholar 

  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 1151–1172.

    Article  MathSciNet  MATH  Google Scholar 

  • Shennan, S. (1998). Quantifying archaeology. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statisti cal Society B, 64, 583–639.

    Article  MathSciNet  MATH  Google Scholar 

  • Stuiver, M. K., Reimer, P. J. and Braziunas, T. F. (1998). High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40, 1127–1151.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London

About this chapter

Cite this chapter

Sahu, S.K. (2004). Applications of Formal Model Choice to Archaeological Chronology Building. In: Buck, C.E., Millard, A.R. (eds) Tools for Constructing Chronologies. Lecture Notes in Statistics, vol 177. Springer, London. https://doi.org/10.1007/978-1-4471-0231-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0231-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-763-6

  • Online ISBN: 978-1-4471-0231-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics