Advertisement

Reachability, controllability and observability of positive systems

  • Tadeusz Kaczorek
Part of the Communications and Control Engineering book series (CCE)

Abstract

Consider a discrete-time (internally) positive system described by the equation
$$ x_{i + 1} = Ax_i + Bu_i i \in Z_ + $$
(3.1)
where \( x_i \in R^n \) is the state vector, \( u_i \in R^m \) is the input vector and \( A \in R_ + ^{nxm} , \) \( B \in R_ + ^{nxm} . \)

Keywords

Singular System Reachable State Positive System Nonzero Initial State Monomial Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Kaczorek, Linear Control Systems, Vol. 2, Research Studies Press and J. Wiley, New York, 1993.Google Scholar
  2. [2]
    T. Kaczorek, Theory of Control Systems, PWN, Warszawa, 1999 (in Polish).Google Scholar
  3. [3]
    T. Kaczorek, Reachability and controlability of positive linear systems with state feedbacks, Bull. Pol. Acad. Techn. Sci., Vol. 47, No 1, 1999, 67–73.MATHGoogle Scholar
  4. [4]
    T. Kaczorek, Positive descriptor discrete-time linear systems, International Journal: Problems of Nonlinear Analysis in Engineering Systems, No 1(7), 1998, 38–54Google Scholar
  5. [5]
    T. Kaczorek, Reachability and controllability of weakly positive singular discrete linear systems, 14th Conference on Cybernetics and Systems Research, Wiede, 14–17 kwiecie 1998, 3–8.Google Scholar
  6. [6]
    T. Kaczorek, Weakly positive continuous-time linear systems, Bull. Pol. Acad. Techn. Sci., Vol. 46, No. 2, 1998, 233–245.MathSciNetMATHGoogle Scholar
  7. [7]
    A. Banaszuk, M. Koci cki, Observability with unknown input and dual properties for singular systems, J.C. Baltzer AG, Scientific Publishing Co., IMACS,1991,125–129.Google Scholar
  8. [8]
    R.P. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM J. Control, Vol. 10, No. 2, 1972, 339–353.MATHGoogle Scholar
  9. [9]
    S.L. Campbell, Singular systems of differential equations. Pitman Advanced Publishing Program, 138–143.Google Scholar
  10. [10]
    S.L. Campbell, N.K. Nichols and W.J. Terrell, Duality, observability and controllablity for linear time-varying descriptor systems, Circuits Systems Signal Process, Vol. 10, No 4, 1991, 455–470.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    K.-W. E. Chu, Controllability of descriptor systems, Int. J. Control, Vol. 46, No. 5, 1987, 1761–1770.Google Scholar
  12. [12]
    D. Cobb, Controllability, observability and duality in singular systems, IEEE Trans. Automat. Contr., Vol. AC-29, No 12, 1984, 1076–1082.MathSciNetCrossRefGoogle Scholar
  13. [13]
    P.G. Coxson, Positive input reachability and controllability of positive ystems, Linear Algebra and its Applications, 94, 1987, 35–53.Google Scholar
  14. [14]
    L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, Springer-Verlag, 1989.Google Scholar
  15. [15]
    M.P. Panti, B. Maione and B. Turchiano, Controllability of linear single-input positive discrete-time systems, Int. J. Control, Vol. 50, No 6, 1989, 2523–2542.CrossRefGoogle Scholar
  16. [16]
    M.P. Panti, B. Maione and B. Turchiano, Controllability of multi-input positive discrete-time systems,Int. J. Control,Vol. 51, No 6, 1990, 1295–1308.CrossRefGoogle Scholar
  17. [17]
    T. Kaczorek, Positive singular discrete linear systems, Bull. Pol. Acad. Techn. Sci., Vol. 45, No 4, 1997, 619–631.MATHGoogle Scholar
  18. [18]
    T. Kaczorek, Positive singular discrete linear systems, Bull. Pol. Acad. Techn. Sci., Vol. 45, No 4, 1997, 619–631.MATHGoogle Scholar
  19. [19]
    T. Kaczorek, Electrical circuits as examples of positive singular continuous-time systems, SPETO’98, Ustro 20-22.05.98, 37–43.Google Scholar
  20. [20]
    T. Kaczorek, S abo dodatnie uk ady w elektrotechnice, Przegl d Elektrotechniczny RLXXIV, 11’ 1998,. 277–281.Google Scholar
  21. [21]
    T. Kaczorek, S abo dodatnie singularne uk ady dyskretne, Zeszyty Naukowe Politechniki 1 skiej, Seria Automatyka z. 123, 1998, 233–248.Google Scholar
  22. [22]
    T. Kaczorek, J. Klamka, Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control, Vol. 44, No 3, 1986, 645–650.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publ,. Dordecht, 1991.Google Scholar
  24. [24]
    J. Klamka, Sterowalno uk adÓw dynamicznych, PWN, Warszawa — Wroc aw, 1990.Google Scholar
  25. [25]
    J. Klamka, Uncontrollability and unobservability of multivariable systems, IEEE Trans. on Automatic Control, Vol. AC-17, No 5, October 1972, 725–726.MathSciNetCrossRefGoogle Scholar
  26. [26]
    J. Klamka, Uncontrollability and unobservability of composite systems, IEEE Trans. on Automatic Control, Vol. AC-18, No 5, October 1973, 539–540.MathSciNetCrossRefGoogle Scholar
  27. [27]
    J. Klamka, Uncontrollability composite systems, IEEE Trans. on Automatic Control, Vol. AC-19, No. 3, 1994, 280–281.MathSciNetGoogle Scholar
  28. [28]
    J. Klamka, Ocena sterowalno ci i obserwowalno ci poprzez kanoniczn fonn Jordana, Podstawy Sterowania, t. 4, z. 4, 1974, 349–370.Google Scholar
  29. [29]
    J. Klamka, Ocena sterowalno ci uk adow z o onych poprzez kanoniczn fonn Jordana, Podstawy Sterowania, t. 5, z. 1, 1975, 43–61.Google Scholar
  30. [30]
    J. Klamka, T. D otko, J. Lig za, Controllability and minimum energy control of linear systems, Podstawy Sterowania, t. 6, z. 2, 1976, 211–218.Google Scholar
  31. [31]
    J. Klamka, Relative controllability and minimum energy control of linear systems with distrubuted delays in control, IEEE Trans. on Automatic Control, Vol. AC-21, No 4, August 1976, 594–595.MathSciNetCrossRefGoogle Scholar
  32. [32]
    J. Klamka, Sterowalno i sterowanie z minimaln energi uk adami z roz o onym opÒ nieniem w sterowaniu, Archiwum Automatyki i Telemechaniki, t. XXI, z. 4, 1976, 437–446.MathSciNetGoogle Scholar
  33. [33]
    J. Klamka, Relative controllability of nonlinear systems with delays in control, IEEE Automatica, Vol. 12, No 6, Dec. 1976, 633–634.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    J. Klarnka, Sterowalno uk adÓw dynamicznych — przegl d problemÓw, Archiwum Automatyki i Telemechaniki, t. XXVI, z. 2, 1981, 279–309.Google Scholar
  35. [35]
    J. Klarnka, Minimum energy control of 2D systems in Hilbert spaces, Materia y Konferencji nt. “Systems Science VIII”, 13-16.09. 1983, Wroc aw, 73–74.Google Scholar
  36. [36]
    J. Klarnka, Minimum energy control of 2D systems in Hilbert spaces, Systems Science, Vol. 9, No 1-2, 1983, 33–42.MathSciNetGoogle Scholar
  37. [37]
    J. Klarnka, Sterowalno uk adów dynamicznych przy ograniczeniach na sterowanie — przegl d problemÓw, Archiwum Automatyki i Telemechaniki, t. XXXII, z. 1-2, 1987, 21–34.Google Scholar
  38. [38]
    J. Klamka, Constrained controllability of 2-D linear sysetms, Proceedings of 12 World IMACS Congress, Paris, 18-22.07.1988, t. 2, 166–169.Google Scholar
  39. [39]
    J. Klamka, Controllability of dynamical systems — a survey, Archives of Control Sciences, Vol. 2 (XXXVIII), No 3-4, 1993, 271–276.MathSciNetGoogle Scholar
  40. [40]
    J. Klamka, Constrained controllability of retarded dynamical sysetms, Applied Mathematics and Computer Science, Vol. 5, No. 3, 1995, 455–479.MathSciNetMATHGoogle Scholar
  41. [41]
    C.E. Langenhop, The Laurent Expansion for a nearly singular matrix, Linear Algebra and its Applications 4, 1971, 329–340.Google Scholar
  42. [42]
    F.L. Lewis, A survey of linear singular systems, Circuits Systems Signal Process, Vol. 5, no 1, 1986, 1–36.CrossRefGoogle Scholar
  43. [43]
    F.L. Lewis, Descriptor systems: Decomposition into forward and backward subsystems, IEEE Trans. Automat. Contr., Vol. AC-29, 1984, 167–170.CrossRefGoogle Scholar
  44. [44]
    F.L. Lewis, Fundamental, reachability and observability matrices for discrete descriptor systems, IEEE Trans. Automat. Contr., Vol. AC-30, 1985, 502–505.CrossRefGoogle Scholar
  45. [45]
    F.L. Lewis, Techniques in 2-D implicit systems, Control and Dynamic Systems, Vol. 69, 89–131.Google Scholar
  46. [46]
    D.G. Luenberger, Time-invariant descriptor systems, Automatica, Vol. 14, 1978, 473–480.MATHCrossRefGoogle Scholar
  47. [47]
    G. Luenberger, Dynamic equations in descriptor form, IEEE Trans. Automat. Contr., Vol. AC-22, No 3, 1977, 312–321.MathSciNetCrossRefGoogle Scholar
  48. [48]
    B.G. Mertzios and F.L. Lewis, Fundamental matrix of discrete singular systems, Circuits, Syst., Signal Processing, vol. 8, no 3. 1989, 341–355.MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    D.N.P. Murthy, Controllability of a linear positive dynamic system, Int. J. Systems Sci., Vol. 17, No 1, 1986, 49–54.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    Y. Ohta, H. Madea and S. Kodama, Reachability, observability and realizability of continuous-time positive systems, SIAM J. Control and Optimization, Vol. 22, No 2, 1984, 171–180.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    K. Ozçaldiran, A geometric characterization of the reachable and the controllable subspaces of descriptor systems, Circuits, Syst., Signal Processing, Vol. 5, No 1. 1986, 37–48.CrossRefGoogle Scholar
  52. [52]
    S. Rinaldi, L. Farina, I Sistemi Lineari Positivi, Citta Studi Edizioni, Milano 1998.Google Scholar
  53. [53]
    B.G. Zaslavski, Controllability of quasimonotone systems in a positive cone, Leningrad, Translated from Avtomatika i Telemekhanika, No 3, 1987, 18–26.Google Scholar
  54. [54]
    E.L. Yip and E.F. Sinovec, Solvability, controllability and observability of continuous descriptor systems, IEEE Trans. Automat. Contr., Vol. AC-26, 1981, 702–707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Tadeusz Kaczorek
    • 1
  1. 1.Institute of Control and Industrial Electronics, Faculty of Electrical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations