Reachability, controllability and observability of positive systems

  • Tadeusz Kaczorek
Part of the Communications and Control Engineering book series (CCE)

Abstract

Consider a discrete-time (internally) positive system described by the equation
$$ x_{i + 1} = Ax_i + Bu_i i \in Z_ + $$
(3.1)
where \( x_i \in R^n \) is the state vector, \( u_i \in R^m \) is the input vector and \( A \in R_ + ^{nxm} , \) \( B \in R_ + ^{nxm} . \)

Keywords

Koci Terrell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Kaczorek, Linear Control Systems, Vol. 2, Research Studies Press and J. Wiley, New York, 1993.Google Scholar
  2. [2]
    T. Kaczorek, Theory of Control Systems, PWN, Warszawa, 1999 (in Polish).Google Scholar
  3. [3]
    T. Kaczorek, Reachability and controlability of positive linear systems with state feedbacks, Bull. Pol. Acad. Techn. Sci., Vol. 47, No 1, 1999, 67–73.MATHGoogle Scholar
  4. [4]
    T. Kaczorek, Positive descriptor discrete-time linear systems, International Journal: Problems of Nonlinear Analysis in Engineering Systems, No 1(7), 1998, 38–54Google Scholar
  5. [5]
    T. Kaczorek, Reachability and controllability of weakly positive singular discrete linear systems, 14th Conference on Cybernetics and Systems Research, Wiede, 14–17 kwiecie 1998, 3–8.Google Scholar
  6. [6]
    T. Kaczorek, Weakly positive continuous-time linear systems, Bull. Pol. Acad. Techn. Sci., Vol. 46, No. 2, 1998, 233–245.MathSciNetMATHGoogle Scholar
  7. [7]
    A. Banaszuk, M. Koci cki, Observability with unknown input and dual properties for singular systems, J.C. Baltzer AG, Scientific Publishing Co., IMACS,1991,125–129.Google Scholar
  8. [8]
    R.P. Brammer, Controllability in linear autonomous systems with positive controllers, SIAM J. Control, Vol. 10, No. 2, 1972, 339–353.MATHGoogle Scholar
  9. [9]
    S.L. Campbell, Singular systems of differential equations. Pitman Advanced Publishing Program, 138–143.Google Scholar
  10. [10]
    S.L. Campbell, N.K. Nichols and W.J. Terrell, Duality, observability and controllablity for linear time-varying descriptor systems, Circuits Systems Signal Process, Vol. 10, No 4, 1991, 455–470.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    K.-W. E. Chu, Controllability of descriptor systems, Int. J. Control, Vol. 46, No. 5, 1987, 1761–1770.Google Scholar
  12. [12]
    D. Cobb, Controllability, observability and duality in singular systems, IEEE Trans. Automat. Contr., Vol. AC-29, No 12, 1984, 1076–1082.MathSciNetCrossRefGoogle Scholar
  13. [13]
    P.G. Coxson, Positive input reachability and controllability of positive ystems, Linear Algebra and its Applications, 94, 1987, 35–53.Google Scholar
  14. [14]
    L. Dai, Singular Control Systems, Lecture Notes in Control and Information Sciences, Springer-Verlag, 1989.Google Scholar
  15. [15]
    M.P. Panti, B. Maione and B. Turchiano, Controllability of linear single-input positive discrete-time systems, Int. J. Control, Vol. 50, No 6, 1989, 2523–2542.CrossRefGoogle Scholar
  16. [16]
    M.P. Panti, B. Maione and B. Turchiano, Controllability of multi-input positive discrete-time systems,Int. J. Control,Vol. 51, No 6, 1990, 1295–1308.CrossRefGoogle Scholar
  17. [17]
    T. Kaczorek, Positive singular discrete linear systems, Bull. Pol. Acad. Techn. Sci., Vol. 45, No 4, 1997, 619–631.MATHGoogle Scholar
  18. [18]
    T. Kaczorek, Positive singular discrete linear systems, Bull. Pol. Acad. Techn. Sci., Vol. 45, No 4, 1997, 619–631.MATHGoogle Scholar
  19. [19]
    T. Kaczorek, Electrical circuits as examples of positive singular continuous-time systems, SPETO’98, Ustro 20-22.05.98, 37–43.Google Scholar
  20. [20]
    T. Kaczorek, S abo dodatnie uk ady w elektrotechnice, Przegl d Elektrotechniczny RLXXIV, 11’ 1998,. 277–281.Google Scholar
  21. [21]
    T. Kaczorek, S abo dodatnie singularne uk ady dyskretne, Zeszyty Naukowe Politechniki 1 skiej, Seria Automatyka z. 123, 1998, 233–248.Google Scholar
  22. [22]
    T. Kaczorek, J. Klamka, Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control, Vol. 44, No 3, 1986, 645–650.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publ,. Dordecht, 1991.Google Scholar
  24. [24]
    J. Klamka, Sterowalno uk adÓw dynamicznych, PWN, Warszawa — Wroc aw, 1990.Google Scholar
  25. [25]
    J. Klamka, Uncontrollability and unobservability of multivariable systems, IEEE Trans. on Automatic Control, Vol. AC-17, No 5, October 1972, 725–726.MathSciNetCrossRefGoogle Scholar
  26. [26]
    J. Klamka, Uncontrollability and unobservability of composite systems, IEEE Trans. on Automatic Control, Vol. AC-18, No 5, October 1973, 539–540.MathSciNetCrossRefGoogle Scholar
  27. [27]
    J. Klamka, Uncontrollability composite systems, IEEE Trans. on Automatic Control, Vol. AC-19, No. 3, 1994, 280–281.MathSciNetGoogle Scholar
  28. [28]
    J. Klamka, Ocena sterowalno ci i obserwowalno ci poprzez kanoniczn fonn Jordana, Podstawy Sterowania, t. 4, z. 4, 1974, 349–370.Google Scholar
  29. [29]
    J. Klamka, Ocena sterowalno ci uk adow z o onych poprzez kanoniczn fonn Jordana, Podstawy Sterowania, t. 5, z. 1, 1975, 43–61.Google Scholar
  30. [30]
    J. Klamka, T. D otko, J. Lig za, Controllability and minimum energy control of linear systems, Podstawy Sterowania, t. 6, z. 2, 1976, 211–218.Google Scholar
  31. [31]
    J. Klamka, Relative controllability and minimum energy control of linear systems with distrubuted delays in control, IEEE Trans. on Automatic Control, Vol. AC-21, No 4, August 1976, 594–595.MathSciNetCrossRefGoogle Scholar
  32. [32]
    J. Klamka, Sterowalno i sterowanie z minimaln energi uk adami z roz o onym opÒ nieniem w sterowaniu, Archiwum Automatyki i Telemechaniki, t. XXI, z. 4, 1976, 437–446.MathSciNetGoogle Scholar
  33. [33]
    J. Klamka, Relative controllability of nonlinear systems with delays in control, IEEE Automatica, Vol. 12, No 6, Dec. 1976, 633–634.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    J. Klarnka, Sterowalno uk adÓw dynamicznych — przegl d problemÓw, Archiwum Automatyki i Telemechaniki, t. XXVI, z. 2, 1981, 279–309.Google Scholar
  35. [35]
    J. Klarnka, Minimum energy control of 2D systems in Hilbert spaces, Materia y Konferencji nt. “Systems Science VIII”, 13-16.09. 1983, Wroc aw, 73–74.Google Scholar
  36. [36]
    J. Klarnka, Minimum energy control of 2D systems in Hilbert spaces, Systems Science, Vol. 9, No 1-2, 1983, 33–42.MathSciNetGoogle Scholar
  37. [37]
    J. Klarnka, Sterowalno uk adów dynamicznych przy ograniczeniach na sterowanie — przegl d problemÓw, Archiwum Automatyki i Telemechaniki, t. XXXII, z. 1-2, 1987, 21–34.Google Scholar
  38. [38]
    J. Klamka, Constrained controllability of 2-D linear sysetms, Proceedings of 12 World IMACS Congress, Paris, 18-22.07.1988, t. 2, 166–169.Google Scholar
  39. [39]
    J. Klamka, Controllability of dynamical systems — a survey, Archives of Control Sciences, Vol. 2 (XXXVIII), No 3-4, 1993, 271–276.MathSciNetGoogle Scholar
  40. [40]
    J. Klamka, Constrained controllability of retarded dynamical sysetms, Applied Mathematics and Computer Science, Vol. 5, No. 3, 1995, 455–479.MathSciNetMATHGoogle Scholar
  41. [41]
    C.E. Langenhop, The Laurent Expansion for a nearly singular matrix, Linear Algebra and its Applications 4, 1971, 329–340.Google Scholar
  42. [42]
    F.L. Lewis, A survey of linear singular systems, Circuits Systems Signal Process, Vol. 5, no 1, 1986, 1–36.CrossRefGoogle Scholar
  43. [43]
    F.L. Lewis, Descriptor systems: Decomposition into forward and backward subsystems, IEEE Trans. Automat. Contr., Vol. AC-29, 1984, 167–170.CrossRefGoogle Scholar
  44. [44]
    F.L. Lewis, Fundamental, reachability and observability matrices for discrete descriptor systems, IEEE Trans. Automat. Contr., Vol. AC-30, 1985, 502–505.CrossRefGoogle Scholar
  45. [45]
    F.L. Lewis, Techniques in 2-D implicit systems, Control and Dynamic Systems, Vol. 69, 89–131.Google Scholar
  46. [46]
    D.G. Luenberger, Time-invariant descriptor systems, Automatica, Vol. 14, 1978, 473–480.MATHCrossRefGoogle Scholar
  47. [47]
    G. Luenberger, Dynamic equations in descriptor form, IEEE Trans. Automat. Contr., Vol. AC-22, No 3, 1977, 312–321.MathSciNetCrossRefGoogle Scholar
  48. [48]
    B.G. Mertzios and F.L. Lewis, Fundamental matrix of discrete singular systems, Circuits, Syst., Signal Processing, vol. 8, no 3. 1989, 341–355.MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    D.N.P. Murthy, Controllability of a linear positive dynamic system, Int. J. Systems Sci., Vol. 17, No 1, 1986, 49–54.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    Y. Ohta, H. Madea and S. Kodama, Reachability, observability and realizability of continuous-time positive systems, SIAM J. Control and Optimization, Vol. 22, No 2, 1984, 171–180.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    K. Ozçaldiran, A geometric characterization of the reachable and the controllable subspaces of descriptor systems, Circuits, Syst., Signal Processing, Vol. 5, No 1. 1986, 37–48.CrossRefGoogle Scholar
  52. [52]
    S. Rinaldi, L. Farina, I Sistemi Lineari Positivi, Citta Studi Edizioni, Milano 1998.Google Scholar
  53. [53]
    B.G. Zaslavski, Controllability of quasimonotone systems in a positive cone, Leningrad, Translated from Avtomatika i Telemekhanika, No 3, 1987, 18–26.Google Scholar
  54. [54]
    E.L. Yip and E.F. Sinovec, Solvability, controllability and observability of continuous descriptor systems, IEEE Trans. Automat. Contr., Vol. AC-26, 1981, 702–707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Tadeusz Kaczorek
    • 1
  1. 1.Institute of Control and Industrial Electronics, Faculty of Electrical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations