Skip to main content

Continuous-time and discrete-time positive systems

  • Chapter
Positive 1D and 2D Systems

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

Consider the linear continuous-time system described by the equations

$$ \dot x = Ax + Bu,x(0 = x_0 ) $$
((2.1a))
$$ y = Cx + Du $$
((2.1b))

where \( x = x(t) \in R^n \) is the state vector at the instant \( t,u = u(t) \in R^m \) is the input vector, \( y = y(t) \in R^p \) is the output vector, \( A \in R^{nxn} ,B \in R^{nxm} ,C \in R^{pxn} ,D \in R^{pxm} . \)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T Kaczorek, Vectors and Matrices in Automation and Electrotechnics, WNT, Warszawa, 1998 (in Polish).

    Google Scholar 

  2. T Kaczorek, Theory of Control Systems, PWN, Warszawa, 1999 (in Polish).

    Google Scholar 

  3. T Kaczorek, Weakly positive systems in electrotechnics, Przegl d Elektrotechniczny,11,1998,92–95 (in Polish).

    Google Scholar 

  4. T Kaczorek, Reachability and controllability of weakly positive singular discrete linear systems, Problemy Automatyki i Robotyki, Wyd. PAN Zak ad Narodowy im. Ossoli skich,1998,101–114.

    Google Scholar 

  5. T Kaczorek, Positive descriptor discrete-time linear systems, Int. Journal: Problems of Nonlinear Analysis in Engineering Systems, Vol. 7, No 1, 1998, 38–54.

    Google Scholar 

  6. V G Rumchev, D J G James, Spectral characterization and pole assignment for positive linear discrete-time systems,Int. J. Systems Sci., Vol. 26, No. 2, 1995, 295 — 312.

    Google Scholar 

  7. T Kaczorek, Stabilization of positive linear systems by state-feedbacks, Pomiary, Automatyka, Kontrola, z.l, nr 3, 1999, 2–5.

    Google Scholar 

  8. A Berman, R J. Plemmons Nonnegative Matrices in the mathematical sciences. Academic Press, New York, 1979

    Google Scholar 

  9. L Farina, S Rinaldi, Positive Linear Systems. Theory and Applications. J. Wiley, New York 2000.

    Google Scholar 

  10. T Kaczorek, Positive Linear Systems and Their Relationship with Electrical Circuit. XX-SPETO, Gliwice-Ustro, 1997, 33–41.

    Google Scholar 

  11. T Kaczorek, Weakly positive continuous-time linear systems,. Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 46, No. 2, 1998, 233–245.

    MathSciNet  MATH  Google Scholar 

  12. T Kaczorek, Externally positive 1D and 2D linear discrete systems. Zastosowania Komputerów w Elektrotechnice, IV Konferencja Naukowo-Techniczna, 1999, 1–5.

    Google Scholar 

  13. W Mitkowski, Remarks on stability of positive linear systems, Control and Cybernetics, Vol. 29, No 1, 2000, 295–304.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Kaczorek, T. (2002). Continuous-time and discrete-time positive systems. In: Positive 1D and 2D Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0221-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0221-2_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1097-2

  • Online ISBN: 978-1-4471-0221-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics