Skip to main content

Lorentz Lattice Gases and Many-Dimensional Turing Machines

  • Chapter

Abstract

We study lattice gas models of parallel, many-tape Turing machines generated by the motion of point objects on a lattice. Each read/write head of the Turing machine is seen as an object that hops from one vertex of the lattice to another according to a rule (symbol) written in the vertex. The symbols written in the lattice vertices represent the scattering rules, or scatterers, of the lattice gas model. Initially, the scatterers are randomly distributed among the vertices of the lattice. The random environment formed by the scatterers may either be fixed or may evolve as a result of collisions with moving objects. The collisions, in fact, simulate the writing of symbols into the lattice vertices. We investigate models of this type with one (many-tape single-head Turing machine) and many (many-tape many-head Turing machine) propagating objects on different types of lattices (different topologies of Turing tapes). We explore the localization and propagation properties of these models. Experiments with lattice gas models of the Turing machine demonstrate that both multiplicity of the Turing heads and non-regularity of the Turing tape may cause a localization of orbits in the corresponding model. The propagation is shown to occur in the one-particle model on the regular triangular lattice, where a moving object always propagates in one direction with random velocity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky A., Melhuish C. and Holland O. Morphology of patterns in lattice swarm: interval parameterization Mathml. Comput. Modell. 30 (1999) 35–59.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett C.H. Universal computation and physical dynamics Physica D 86 (1995) 268–273.

    Article  MathSciNet  MATH  Google Scholar 

  3. Boon J.P. How fast does Langton’s ant move? J. Stat. Phys. 102 (2001) 355–360.

    Article  MATH  Google Scholar 

  4. Bunimovich L.A. Many-dimensional Lorentz cellular automata and Turing machines Int. J. Bif. Chaos 6 (1996) 1127–1136.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bunimovich L.A. On localization of vorticity in Lorentz lattice gases J. Stat. Phys. 87 (1997) 449–457.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunimovich L.A. and Troubetzkoy S.E. Topological properties of flipping Lorentz lattice gas models J. Stat. Phys. 72 (1993) 297–307.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunimovich L.A. and Troubetzkoy S.E. Rotators, periodicity and absence of diffusion in cyclic cellular automata J. Stat. Phys. 74 (1994) 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bunimovich L.A. Motion of particles in random media and many-dimensional Turing machines. Multi. Val. Logic. (2001), in print.

    Google Scholar 

  9. Bunimovich L.A. and Troubetzkoy S.E.Recurrence properties of Lorentz.lattice gas cellular automata J. Stat. Phys.67(1992) 289–302.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bunimovich L.A. and Troubetzkoy S.E. Mechanisms which produce nongaussian behavior.in Lorentz lattice gas cellular automata In Dynamics of Complex and Irregular Structures, Blanchard Ph. (Editor) (World Scientific: Singapore, 1994) 86–92.

    Google Scholar 

  11. Bunimovich L.A. and Khlabystova M.A. Localization and propagation in random lattices J. Stat. Phys. 104 (2001) 1155–1171.

    Article  MathSciNet  MATH  Google Scholar 

  12. Burgin B.S. Inductive Turing machines Notices of the Academy of Sciences of the USSR 270 (1991) 1289–1293.

    MathSciNet  Google Scholar 

  13. Christ N.H., Friedberg R. and Lee T.D. Random lattice field theory: general formulation Nucl. Phys. B 202 (1982), 89–125.

    Article  MathSciNet  Google Scholar 

  14. Cohen E.G.D. New types of diffusion in lattice gas cellular automata In Microscopic Simulations of Complex Hydrodynamic Phenomena Mareschal M. and Holian B.L. (Editors) (Plenum: New York, 1992) 137–152.

    Google Scholar 

  15. Dewdney A.K. Two-dimensional Turing machines and Turmites make tracks on a plane Scientific American September (1989) 180–183.

    Google Scholar 

  16. Ehrenfest P. Collected Scientific Papers (North Holland: Amsterdam, 1959) 229.

    MATH  Google Scholar 

  17. Friedberg R. and Ren H.-C. Field theory on a computationally constructed random lattice Nucl. Phys. B 35[FS11] (1984) 310–320.

    Article  MathSciNet  Google Scholar 

  18. Grosfils P., Boon J.P., Cohen E.G.D. and Bunimovich L.A. Propagation and self-organization in lattice random media J. Stat. Phys. 97 (1999) 575–608.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gunn J.M.F. and Ortuño M. Percolation and motion in a simple random environment J. Phys. A18 (1985) 1095–1099.

    Google Scholar 

  20. Hartmanis J. and Stearns R.E. On the computational complexity of algorithms Trans. Amer. Math. Soc. 117 (1965) 285–306.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hemmerling A. Concentration of multidimensional tape-bounded systems of Turing automata and cellular spaces In Budach L. (Editor) Fundamentals of Computation Theory (Berlin: Akademie-Verlag, 1979) 167–174.

    Google Scholar 

  22. Hoperoft J.E. and Ullman J.D. Formal Languages and their Relation to Automata (Addison-Wesley, 1969).

    Google Scholar 

  23. Jiang T., Seiferas J.I. and Vitanyi P.M.B. Two heads are better than two tapesJ. ACM 44 (1997) 237–256.

    Article  MathSciNet  MATH  Google Scholar 

  24. Koiran P. and Moore C. Closed-form analytic maps in one and two dimensions can simulate universal Turing machines Theor. Comput. Sci. 210 (1999) 217–223.

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurka P. On topological dynamics of Turing machines Theor. Comput. Sci. 174 (1997) 203–216.

    Article  MathSciNet  MATH  Google Scholar 

  26. Langton C.G. Studying artificial life with cellular automata Physica D22 (1986) 120–149.

    MathSciNet  Google Scholar 

  27. Lorentz H.A. The motion of electrons in metallic bodies Proc. Amst. Acad. 7 (1905), 438, 585, 604.

    Google Scholar 

  28. Moore C. Unpredictability and undecidability in dynamical systems Phys. Rev. Lett. 64 (1990) 2354–2357.

    Article  MathSciNet  MATH  Google Scholar 

  29. Moukarzel C. Laplacian growth on a random lattice PhysicaB190 (1992) 13–23.

    Google Scholar 

  30. Moukarzel C. and Herrmann H.J. A vectorizable random lattice J. Stat. Phys 68 (1992) 911–923.

    Article  MathSciNet  MATH  Google Scholar 

  31. Petersen K. Ergodic Theory (Cambridge Univ. Press: Cambridge, 1983).

    MATH  Google Scholar 

  32. Ruijgrok T.W. and Cohen E.G.D. Deterministic lattice gas models Phys. Lett. A133 (1988) 415–419.

    MathSciNet  Google Scholar 

  33. Siegelmann H.T. The simple dynamics of super Turing theories Theor. Comput. Sci. 168 (1996) 461–472.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang F. and Cohen E.G.D. Diffusion on random lattices, J. Stat. Phys. 84 (1996) 233–261

    Article  Google Scholar 

  35. Worsch T. On parallel Turing machines with multi-head control units Parallel Comput. 23 (1997) 1683–1697.

    Article  MathSciNet  Google Scholar 

  36. Worsch T. Parallel Turing machines with one-head control units and cellular automataTheor. Comput. Sci. 217 (1999) 3–30.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Bunimovich, L.A., Khlabystova, M.A. (2002). Lorentz Lattice Gases and Many-Dimensional Turing Machines. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics