Skip to main content

New Media for Collision-Based Computing

  • Chapter
Collision-Based Computing

Abstract

Mobile localizations are ubiquitous. They present everywhere. They are breathers in molecular chains, excitons in molecular aggregates, dipole defects in tubulin micro-tubules, oscillons in granular materials, quasi-particles in reaction-diffusion systems. The chapter examines these potential “components” of collision-based computers, constructs simple logical gates, implementable in the systems, and compares the findings with cellular-automata models of the phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz M.J., Keiser J.M. and Takhtajan L.A. Class of stable multistate time-reversible cellular automata with rich particle content Phys. Rev. A 44 (1991) 10, 6909–6912.

    Google Scholar 

  2. Adamatzky A. Universal dynamical computation in multidimensional excitable lattices Int. J. Theor. Phys. 37 (1998) 3069–3108.

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamatzky A. Collision-based computing in biopolymers and their automata models hit. J. Modern Phys. C 7 (2000).

    Google Scholar 

  4. Adamatzky A. Computing in nonlinear media and automata collectives (Institute of Physics Publishing, 2001).

    Google Scholar 

  5. Astrov Y.A. and Purwins H.-G. Plasma spots in a gas discharge system: birth, scattering and formation of molecules Physics Letters A 283 (2001) 349–354.

    Article  Google Scholar 

  6. Bang O., Christiansen P.L., If F., Rasmussen K.O. and Gaididei Y. Temperature effects in a nonlinear model of monolayer Scheibe aggregates Physical Review E 49 (1994) 4627–4635.

    Article  Google Scholar 

  7. Bartnik E.A., Blinowska K.J. and Tuszynski J.A. The possibility of an excitonic fast and nearly lossless energy transfer in biomolecular systems Physics Letters A 159 (1991) 67–72.

    Article  Google Scholar 

  8. Bartnik E.A., Blinowska K.J. and Tuszynski J.A. Analytical and numerical modelling of Scheibe aggregates Nanobiology 1 (1992) 239–250.

    Google Scholar 

  9. Bartnik E.A. and Tuszynski J.A. Theoretical models of energy transfer in two-dimensional molecular assemblies Physical Review E 48 (1993) 1516–1528.

    Article  Google Scholar 

  10. Blagoeva A.B., Dinev S.G., Dreischuh A.A. and Naidenov A. Light bullets formation in a bulk media IEEE J. Quantum Electronics 27 (1991) 2060.

    Article  Google Scholar 

  11. Bobenko A., Bordemannm M., Gunn C. and Pinkall U. On 2 integrable cellular-automata Comm. Math. Phys. 158 (1993) 127–134.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bode M. and Purwins H.-G. Pattern formation in reaction-diffusion systems-dissipative solitons in physical systems Physica D 86 (1995) 53–63.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bolc L. and Borowik P. Many-Valued Logics (Springer-Verlag, Berlin, 1992).

    MATH  Google Scholar 

  14. Brown J.A. and Tuszynski J.A. A review of the ferroelectric model of micro-tubules Ferroelectrics 220 (1999) 141–156.

    Article  Google Scholar 

  15. Brown J.A. and Tuszynski J.A. Dipole interactions in axonal microtubules as a mechanism of signal propagation Physical Review E 56 (1997) 5834–5839.

    Article  Google Scholar 

  16. Casati R., Costato M. and Milani M. Cellular automata simulation of the effects induced by an external electromagnetic field on microtubule formation dynamics Bioelectrochemistry and Bioenergetics 41 (1996) 63–69.

    Article  Google Scholar 

  17. Christiansen P.L., Rasmussen K.O., Bang O. and Gaididei Yu.B. The temperature-dependent collapse regime in a nonlinear dynamical model of Scheibe aggregates Physica D 87 (1995) 321–324.

    Article  MATH  Google Scholar 

  18. Collecutt G.R. and Drummond P.D. Digital response with femtosecond resolution in an optical AND gate Optics Comm. 184 (2000) 237–243.

    Article  Google Scholar 

  19. Crawford C. and Riecke H. Oscillon-type structures and their interaction in a Swift-Hohenberg model Physica D 129 (1999) 83–92.

    Article  Google Scholar 

  20. Dassow J. and Jurgensen H. Soliton automata Lect. Notes Comput. Sci. 278 (1987) 95–102.

    Article  Google Scholar 

  21. Dassow J. and Jurgensen H. Deterministic soliton automata with a single exterior node Theoret. Comput. Sci. 84 (1991) 2, 281–292.

    Article  MathSciNet  Google Scholar 

  22. Dennin M., Ahlers G. and Cannell D.S. Spatiotemporal chaos in electroconvection Science 272 (1996) 388–390.

    Article  Google Scholar 

  23. Dennin M., Cannell D.S. and Ahlers G. Patterns of electroconvection in a nematic liquid crystal Phys. Rev. E 57 (1998) 1, 638–649.

    Article  Google Scholar 

  24. Dennin M., Treiber M., Kramer L., Ahlers G. and Cannell D.S. Origin of traveling rolls in electroconvection of nematic liquid crystals Phys. Rev. Lett. 76 (1996) 319–322.

    Article  Google Scholar 

  25. Dennin M., Ahlers G. and Cannell D.S. Chaotic localized states near the onset of electroconvection Phys. Rev. Lett. 77 (1996) 2475–2478.

    Article  Google Scholar 

  26. Drummond P.D., Kheruntsyan K.V. and He H. Novel solitons in parametric amplifiers and atom laser J. Opt. B 1 (1999) 387–395.

    Article  Google Scholar 

  27. Edmundson D.E. and Enns R.H. Bistable light bullets Optics Energy 17 (1992) 586.

    Google Scholar 

  28. Edmundson D.E. and Enns R.H. Fully 3-dimensional collisions of bistable light bullets Optics Letters 18 (1993) 1609.

    Article  Google Scholar 

  29. Edmundson D.E. and Enns R.H. The particle-like nature of colliding light bullets Physical Review A 51 (1995) 2491–2498.

    Article  Google Scholar 

  30. Edmundson D. and Enns R. Light Bullet Home Page http://www.sfu.ca/~renns/1bullets.html (1996).

    Google Scholar 

  31. Forinash K., Peyrard M. and Malomed B. Interaction of discrete breathers with impurity modes Phys. Review E 49 (1994) 3400–3411.

    Article  Google Scholar 

  32. Forinash K., Cretegny T. and Peyrard M. Local modes and localizations in a multicomponent lattices Phys. Rev. 55 (1997) 4740–4756.

    Google Scholar 

  33. Fuchssteiner B. Filter automata admitting oscillating carrier waves Appl. Math. Letters 4 (1991) 6, 23–26.

    MathSciNet  Google Scholar 

  34. Frauenkorn H., Kivshar Y.S., and Malomed B.A. Multisoliton collisions in nearly integrable systems Phys. Rev. E (Rapid Comm.) 54 (1996) R2244–R2247.

    Article  Google Scholar 

  35. Freeman N.C. Soliton interaction in two dimensions Advances in Applied Mechanics 20 (1980) 1–37.

    Google Scholar 

  36. Gecseg F. and Jürgensen H. Automata represented by products of soliton automata Theoretical Computer Science 74 (1990) 163–181.

    Article  MathSciNet  MATH  Google Scholar 

  37. Griffeath D. and Moore C. Life without death is P-complete, http://www.santafe.edu/~Moore (1997).

    Google Scholar 

  38. Hameroff S.R. and Watt R.C. Information processing in microtubules J. Theor. Biol. 98 (1982) 549–561.

    Article  Google Scholar 

  39. Hameroff S., Smith S. and Watt R. Automaton model of dynamic organization in microtubules Ann. N.Y. Acad. Sci. 466 (1986) 949–952.

    Article  Google Scholar 

  40. Hagberg A.A. Fronts and Patterns in Reaction-Diffusion Equations (PhD Thesis, The University of Arizona, 1994).

    Google Scholar 

  41. Hanson J. E. and Crutchfield J. P. Computational mechanics of cellular automata: An example Physica D 103 (1997) 169–189.

    Article  MathSciNet  MATH  Google Scholar 

  42. Islam M.N., Soccolich C.E. and Gordon J.P. Ultrafast digital soliton logic gates Optical and Quantum Electronics 24 (1992) S1215–S1235.

    Article  Google Scholar 

  43. Jakubowski M.H. Using nls for solution and visualization of NLS (Dept. of Computer Science, Princeton University, 1998).

    Google Scholar 

  44. Jakubowski M.H., Steiglitz K. and Squier R. Information transfer between solitary waves in the saturable Schrödinger equation Physical Reviewe E 56 (1997) 7267–7272.

    Article  Google Scholar 

  45. Kenkre V.M. Theoretical methods for the analysis of exciton capture and annihilation. In: Reineker P., Haken H. and Wolf H.C., Editors Organic Molecular Aggregates: Electronic Excitation and Interaction Processes (Berlin and Heidelberg: Springer-Verlag, 1983) 193–201.

    Google Scholar 

  46. Lam L. and Post J. (Editors) Solitons in Liquid Crystals (New York: Springer-Verlag, 1992).

    Google Scholar 

  47. Lee K.J., McCormick W.D., Pearson J.E. and Swinney H.L. Experimental observation of self-replicating spots in a reaction-diffusion system Nature 369 (1994) 215–128.

    Article  Google Scholar 

  48. Liehr A.W., Bode M. and Purwins H.-G. The generation of dissipative quasi-particles near Turing’s bifurcation in three-dimensional reaction-diffusion system In: Krause E. and Jäger W., Editors High Performance Computing in Science and Engineering 2000 (Springer-Verlag, 2001).

    Google Scholar 

  49. Maimistov A., Malomed B. and Desyatnikov A. A potential of incoherent attraction between multidimensional solitons patt-so1/9812009 (1998).

    Google Scholar 

  50. Makhankov V.G. Phenomenology of Solitons (Kluwer Academic Publishers, 1990).

    Google Scholar 

  51. Matsukidaira J., Satsuma J., Takahashi D., Tokihiro T. and Torii M. Toda-type cellular automata and its N-soliton solution Phys. Lett. A 225 (1997) 287–295.

    Article  MathSciNet  MATH  Google Scholar 

  52. Moebius D. and Kuhn H. Energy transfer in monolayers with cyanine dye Scheibe aggregates J. Appl. Phys. 64 (1979) 5138–5141.

    Article  Google Scholar 

  53. Moriwaki S., Nagai A., Satsuma J., Tokihiro T., Torii M., Takahashi D. and Matsukidaira J. 2+1 dimensional soliton cellular automaton London Math. Soc. Lect. Notes Ser. 255 (1999) 224–235.

    MathSciNet  Google Scholar 

  54. Oficjalski J. and Bialynicki-Birula I. Collision of gaussons Acta Physica Polonica B9 (1978) 759–775.

    MathSciNet  Google Scholar 

  55. Ostrovskaya E.A., Kivshar Yu.S., Chen Z. and Segev M. Solitonic gluons http://xxx.lanl.gov/pattso1/9808005 (1998).

    Google Scholar 

  56. Papatheodorou T.S., Ablowitz M.J. and Saridakis Y.G. A rule for fast computation and analysis of soliton automata Studies in Appl. Math. 79 (1988) 2, 173–184.

    MathSciNet  Google Scholar 

  57. Park J.K., Steiglitz K. and Thurston W.P. Soliton-like behavior in automata Physica D19 (1986) 423–432.

    MathSciNet  Google Scholar 

  58. Pfaffmann J.O. and Conrad M. Adaptive information processing in microtubule network BioSystems 55 (2000) 47–58.

    Article  Google Scholar 

  59. Rasmussen K.O., Aubry S., Bishop A.R. and Tsironis G.P. Discrete nonlinear Schrödinger breathers in a phonon bath patt-so1/9901002 v2 (1999).

    Google Scholar 

  60. Riecke H. and Granzow G.D. Localization of waves without bistability: worms in nematic electroconvection http://xxx.lanl.gov/patt-so1/9802003 (1998).

    Google Scholar 

  61. Schenk C.P., Or-Guil M., Bode M. and Purwins 11.-G. Interaction pulses in three-component reaction-diffusion systems on two-dimensional domains Phys. Rev. Lett. 78 (1997) 3781–3784.

    Article  Google Scholar 

  62. Schenk C.P., Liehr A.W., Bode M. and Purwins H.-G. Quasi-particles in a three-dimensional three-component reaction-diffusion system In: Krause E. and Jäger W. (Eds.) High Performance Computing in Science and Engineering 1999. Transactions of the High Performance Computing Center (Stuttgart, 1999). http://www.unimuenster.de/physik/ap/purwins/struktur/h1rs1999.htm

    Google Scholar 

  63. Schimansky-Geier L., Mieth M., Rose H. and Malchow H. Structure formation by active Brownian particles Preprint (April 18, 1995).

    Google Scholar 

  64. Steiglitz K., Kamal I., and Watson A. Embedded computation in one-dimensional automata by phase coding IEEE Trans. on Computers 37 (1988) 138–145.

    Article  MathSciNet  Google Scholar 

  65. Steinbock O., Kettunen P. and Showalter K. Chemical wave logic gates J. Phys. Chem. 100 (1996) 49, 18970–18975.

    Google Scholar 

  66. Takahashi D. and Matsukidaira J. On discrete soliton-equations related to cellular-automata Phys. Lett. A 209(1995) 184–188.

    Article  MathSciNet  MATH  Google Scholar 

  67. Tóth A. and Showalter K. Logic gates in excitable media J. Chem. Phys. 103 (1995) 2058–2066.

    Article  Google Scholar 

  68. Tokihiro T., Takahashi D., Mattsukidaira J. and Satsuma J. From solitonequations to integrable cellular-automata through a limiting procedure Phys. Rev. Lett. 76 (1996) 191–196.

    Article  Google Scholar 

  69. Toyozawa Y. Localization and delocalization of an exciton in the phonon field In: Reineker P., Haken H. and Wolf H.C., Editors Organic Molecular Aggregates: Electronic Excitation and Interaction Processes (Berlin and Heidelberg: Springer-Verlag, 1983) 90–106.

    Google Scholar 

  70. Trpisova B. and Tuszynski J.A. Possible link between 5’-triphosphate hydrolysis and solitary waves in microtubules Phys. Rev. E 55 (1997) 3288–3305.

    Article  Google Scholar 

  71. Tsimring L.S. and Aranson I.S. Localized and cellular patterns in a vibrated granular layer patt-so1/9703009 v2 (1997).

    Google Scholar 

  72. Tu Y. Worm structure in modified Swift-Hohenberg equation for electroconvection patt-sol/9701001 (1997)

    Google Scholar 

  73. Tuszynski J.A., Trpisova B., Sept B. and Brown J.A. Physical issues in the structure and function of microtubules Journal of Structural Biology 118 (1997) 94–106.

    Article  Google Scholar 

  74. Venkataramani S.C. and Ott E. Spatio-temporal bifurcation phenomena with temporal period doubling: patterns in vibrated sand Phys. Rev. Lett. 80 (1998) 3495.

    Article  Google Scholar 

  75. Zabusky N.J. and Kruskal M.D. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states Phys. Rev. Lett. 15 (1965) 240–243.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Adamatzky, A. (2002). New Media for Collision-Based Computing. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics