Skip to main content

Computing with Solitons: A Review and Prospectus

  • Chapter
Collision-Based Computing

Abstract

We review work on computing with solitons, from the discovery of solitons in cellular automata, to an abstract model for particle computation, to information transfer in collisions of optical solitons, to state transformations in collisions of vector soli-tons. We conclude by discussing open problems and the prospects for practical applications using optical solitons in photo-refractive crystals and other materials.

©Taylor and Francis Group, 2000

Original version of the chapter was published III the Multiple-Valued Logic Journal by Taylor and Francis (UK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz M.J. and Clarkson P.A. Solitons, Nonlinear Evolution Equations, and Inverse Scattering. (Cambridge University Press, Cambridge, UK, 1991).

    Book  MATH  Google Scholar 

  2. Ablowitz M.J., Keiser J.M., and Takhtajan L.A. Class of stable multistate time-reversible cellular automata with rich particle content. Phys. Rev. A 44 (1991) 6909–6912.

    Google Scholar 

  3. Adamatzky A.I. Constructing a discrete generalized Voronoi diagram in reaction-diffusion media.Neural Network World 6 (1994) 635–643.

    Google Scholar 

  4. Adamatzky A.I. On the particle-like waves in the discrete model of excitable medium. Neural Network World 1 (1996) 3–10.

    Google Scholar 

  5. Adamatzky A.I. Computation of shortest path in cellular automata. Mathl. Comput. Modelling 23 (1996) 105–113.

    MathSciNet  MATH  Google Scholar 

  6. Adamatzky A.I. Universal dynamical computation in multidimensional excitable lattices. Int. J. Theor. Phys. 37 (1998) 3069–3108.

    Article  MathSciNet  MATH  Google Scholar 

  7. Atrubin A.J. An iterative one-dimensional real-time multiplier. IEEE Trans. Electron. Computers EC-14 (1965) 394–399.

    Article  Google Scholar 

  8. Bennett C.H. Logical reversibility of computation. IBM Journal of Research and Development 17 (1973) 525–532.

    Article  MATH  Google Scholar 

  9. Berlekamp E.R., Conway J.H., and Guy R.K. Winning Ways for Your Mathematical Plays. (Academic Press, New York, NY, 1982).

    Google Scholar 

  10. Boccara M., Nasser J. and Roger M. Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. Phys. Rev. A 44 (1991) 866–875.

    Google Scholar 

  11. Bruschi M., Santini P.M., and Ragnisco O. Integrable cellular automata. Phys. Lett. A 169 (1992) 151–160.

    MathSciNet  Google Scholar 

  12. Drazin P.G. and Johnson P.G. Solitons: An Introduction. (Cambridge University Press, Cambridge, UK, 1989).

    Book  MATH  Google Scholar 

  13. http://www.santafe.edu/~evca.

  14. Fokas A.S, Papadopoulou E., and Saridakis Y. Particles in soliton cellular automata. Complex Systems 3 (1989) 615–633.

    MathSciNet  MATH  Google Scholar 

  15. Fokas A.S., Papadopoulou E., and Saridakis Y. Coherent structures in cellular automata. Physics Letters A 147 (1990) 369–379.

    Article  MathSciNet  Google Scholar 

  16. Fredkin E. and Toffoli T. Conservative logic. International Journal of Theoretical Physics 21 (1982) 219–253.

    Article  MathSciNet  MATH  Google Scholar 

  17. Frisch U, d’Humie’res D., Hasslacher B., Lallemand P., Pomeau Y., and Rivet J.P. Lattice gas hydrodynamics in two and three dimensions Complex Systems 1 (1987) 649–707.

    MathSciNet  MATH  Google Scholar 

  18. Goldberg C.H. Parity filter automata. Complex Systems 2 (1988) 91–141.

    MathSciNet  MATH  Google Scholar 

  19. Hordijk M., Crutchfield J.P. and Mitchell M. Embedded-particle computation in evolved cellular automata. In T. Toffoli, M. Biafore, and J. Leão, editors, Proc. Fourth Workshop on Physics and Computation (PhysComp96), pages 153–158, Boston, Mass., Nov. 153–158, 1996. New England Complex Systems Institute.

    Google Scholar 

  20. Jakubowski M.H. Computing with Solitons in Bulk Media (Ph.D. Thesis). Princeton University, Princeton, NJ, 1998.

    Google Scholar 

  21. Jakubowski M.H., Steiglitz K., and Squier R. State transformations of colliding optical solitons and possible application to computation in bulk media. Physical Review E 58 (1998) 6752–6758.

    Article  Google Scholar 

  22. Jakubowski M.H., Steiglitz K., and Squier R.K. Implementation of parallel arithmetic in a cellular automaton. In 1995 Int. Conf. on Application Specific Array Processors, Strasbourg, France (P. Cappello et al., ed.), Los Alamitos, CA, July 24–26, 1995. IEEE Computer Society Press.

    Google Scholar 

  23. Jakubowski M.H., Steiglitz K., and Squier R.K. When can solitons compute? Complex Systems 10 (1996) 1–21

    MathSciNet  MATH  Google Scholar 

  24. Jakubowski M.H., Steiglitz K., and Squier R.K. Information transfer between solitary waves in the saturable Schrödinger equation. Physical Review E 56 (1997) 7267–7273.

    Article  Google Scholar 

  25. Kang J.U., Stegeman G.I., Aitchison J.S., and Akhmediev N.N. Observation of Manakov spatial solitons in A1GaAs planar waveguides. Phys. Rev. Lett. 76 (1996) 3699–3702.

    Article  Google Scholar 

  26. Kung H.T. Why systolic architectures? IEEE Computer 15 (1982) 37–46.

    Article  Google Scholar 

  27. Leighton F.T. Introduction to Parallel Algorithms and Architectures. Morgan Kaufman Publishers, San Mateo, CA, 1992.

    MATH  Google Scholar 

  28. Liu H.-H. and Fu K.-S. VLSI arrays for minimum-distance classifications. In K. S. Fu, editor, VLSI for Pattern Recognition and Image Processing. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  29. Makhankov V.G. Soliton Phenomenology. (Kluwer Academic Publishers, Norwell, MA, 1990).

    Book  MATH  Google Scholar 

  30. Manakov S.V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Soviet Physics: JETP 38 (1974) 248–253.

    MathSciNet  Google Scholar 

  31. Margolus N. Physics-like models of computation. Physica D 10 (1984) 81–95.

    MathSciNet  Google Scholar 

  32. Park J.K., Steiglitz K., and Thurston W.P. Soliton-like behavior in automata. Physica D, 19 (1986) 423–432.

    Article  MathSciNet  MATH  Google Scholar 

  33. Parks T.W. and Burrus C.S. Digital Filter Design (John Wiley, New York, 1987).

    MATH  Google Scholar 

  34. Radhakrishnan R., Lakshmanan M., and Hietarinta J. Inelastic collision and switching of coupled bright solitons in optical fibers. Physical Review E 56 (1997) 2213–2216.

    Article  Google Scholar 

  35. Rebbi C. and Soliani G. Solitons and Particles. (World Scientific, Singapore, 1984).

    MATH  Google Scholar 

  36. Santini P.M. Integrability for algebraic equations, functional equations and cellular automata. In V. Makhankov, I. Puzynin, and O. Pashev, editors, Proc. 8th Workshop on Nonlinear Evolution Equations and Dynamical Systems (NEEDS ’92), pages 214–221, World Scientific, Singapore, 1992.

    Google Scholar 

  37. Scott A.C., Chu F.Y.F., and McLaughlin D.W. The soliton: A new concept in applied science. Proceedings of the IEEE 61 (1973) 1443–1483.

    Article  MathSciNet  Google Scholar 

  38. Segev M., Valley G.C., Crosignani B., DiPorto P., and Yariv A. Steady-state spatial screening solitons in photorefractive materials with external applied field. Physical Review Letters 73 (1994) 3211–3214

    Article  Google Scholar 

  39. Serizawa T. Three-state Neumann neighbor cellular automata capable of constructing self-reproducing machines. Systems and Computers in Japan 18 (1987) 33–40.

    Article  Google Scholar 

  40. Shih M., Segev M., Valley G.C., Salamo G., Crosignani B., and DiPorto P. Observation of two-dimensional steady-state photorefractive screening solitons. Electronics Letters 31 (1995) 826–827.

    Article  Google Scholar 

  41. Shih M. and Segev M. Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons. Optics Letters 21 (1996) 1538–1540.

    Article  Google Scholar 

  42. Siwak P. On automata of some discrete recursive filters that support filtrons. In S. Domek, R. Kaszynski, and L. Tarasiejski, editors, Proc. Fifth Int. Symp. on Methods and Models in Automation and Robotics, volume 3 (Discrete Processes), pages 1069–1074, Miedzyzdroje, Poland, Aug. 1069–1074 1998. Wydawnictwo Politechniki Szczeciinskiej.

    Google Scholar 

  43. Siwak P. Filtrons and their associated ring computations. Int. J. General Systems 27 (1998) 181–229.

    Article  MATH  Google Scholar 

  44. Siwak P. Iterons, fractals and computations of automata. In D. M. Dubois, editor, Second Int. Conf. on Computing Anticipatory Systems, CASYS ’98, conference proceedings 465 45–63, Woodbury, New York, August 1999.

    Google Scholar 

  45. Squier R. and Steiglitz K. Programmable parallel arithmetic in cellular automata using a particle model. Complex Systems 8 (1994) 311–323.

    MathSciNet  MATH  Google Scholar 

  46. Steiglitz K., Kamal I., and Watson A. Embedding computation in one-dimensional automata by phase coding solitons IEEE Transactions on Computers 37 (1998) 138–145.

    Google Scholar 

  47. Takahashi D. On a fully discrete soliton system. In M. Boiti, L. Martina, and P. Pempinelli, editors, Proc. 7th Workshop on Nonlinear Evolution Equations and Dynamical Systems (NEEDS ’91), pages 245–249, World Scientific, Singapore, 1991.

    Google Scholar 

  48. Tikhonenko V., Christou J., and Luther-Davies B. Three-dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium. Physical Review Letters 76 (1996) 2698–2702.

    Article  Google Scholar 

  49. Wolfram S., Editor. Theory and Application of Cellular Automata. World Scientific, Singapore, 1986.

    Google Scholar 

  50. Wolfram S. Universality and complexity in cellular automata. Physica D 10 (1984) 1–35.

    Article  MathSciNet  Google Scholar 

  51. Yariv A. and Yeh P. Optical Waves in Crystals (Wiley, New York, 1984).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Jakubowski, M.H., Steiglitz, K., Squier, R. (2002). Computing with Solitons: A Review and Prospectus. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics