Advertisement

Symbol Super Colliders

  • Tommaso Toffoli

Abstract

We argue that lattice-gas computers are the conceptual offspring of colliding-beams particle accelerators. Instead of streams of physical particles, streams of symbolic tokens are run through one another in a cross-current fashion, intersecting at pre-arranged places and times. In this way, an astronomical number of tokens continually collide and interact in a disciplined choreography.

Keywords

Cellular Automaton Recurrence Relation Spacetime Diagram Spacetime Lattice Particle Collider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BENNETT, Charles, “Notes on the history of reversible computation”, IBM J. Res. Develop. 32 (1988), 16–23.Google Scholar
  2. 2.
    BRUSH, Stephen, The Kind of Motion We Call Heat: Physics and the Atomists, North-Holland 1986.Google Scholar
  3. 3.
    DOOLEN, Gary, et al. (ed.), Lattice-Gas Methods for Partial Differential Equations, Addison-Wesley 1990.Google Scholar
  4. 4.
    FEYNAMN, Richard, The Character of Physical Law, MIT Press 1965.Google Scholar
  5. 5.
    FREDKIN, Edward, and Tommaso TOFFOLI, “Conservative logic”, Int. J. Theor. Phys. 21 (1982), 219–253.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    FRISCH, Uriel, et al., “Lattice gas hydrodynamics in two and three dimensions”, [3], 77–135.Google Scholar
  7. 7.
    FRISCH, Uriel, Brosl HASSLACHER, and Yves POMEAU, “Lattice-gas automata for the Navier-Stokes equation”, Phys. Rev. Lett. 56 (1986), 1505–1508.CrossRefGoogle Scholar
  8. 8.
    GREENSPAN, Donald, Discrete Models, Addison-Wesley 1973.Google Scholar
  9. 9.
    HARDY, J., O. DE PAZZIS, and Yves POMEAU, “Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions”, Phys. Rev. A13 (1976), 1949–1960.Google Scholar
  10. 10.
    JACOPINI, Giuseppe, and Giovanna SONTACCHI, “Reversible parallel computation: an evolving space model”, Theor. Comp. Sci. 73 (1990), 1–46.MathSciNetMATHGoogle Scholar
  11. 11.
    LUCRETIUS, Titus Carus, On the Nature of the Universe, translated by Ronald LATHAM, Penguin 1951.Google Scholar
  12. 12.
    MARGOLUS, Norman “Physics-like models of computation”, Physica D 10 (1984), 81–95.MathSciNetCrossRefGoogle Scholar
  13. 13.
    STRANG, Gilbert, Introduction to Applied Mathematics, Wellesley 1986.Google Scholar
  14. 14.
    TOFFOLI, Tommaso, “Design and realization of a directional, wide-angle cosmic-ray detector utilizing the Cerenkov effect” (in Italian), Doctoral Thesis, Università di Roma, Istituto di Fisica (1967).Google Scholar
  15. 15.
    ’T HOOFT, Gerardus, et al., “Quantum field-theoretic behavior of a deterministic cellular automaton”, Nucl. Phys. B 386 (1992), 495–519.Google Scholar
  16. 16.
    TOFFOLI, Tommaso, “Cellular Automata Mechanics”, Tech. Rep. 208 (1977), Comp. Comm. Sci. Dept., Univ. of Michigan.Google Scholar
  17. 17.
    TOFFOLI, Tommaso, “How cheap can mechanics’ first principles be?” Complexity, Entropy, and the Physics of Information (W. H. ZUREK ed.), Addison-Wesley 1990, 301–318.Google Scholar
  18. 18.
    TOFFOLI, Tommaso, and Ted BACH, “A common language for ‘programmable matter’ (cellular automata and all that)”, AI*IA Notizie (Journal of the Italian Artificial Intelligence Association) 14:2 (June 2001), 32.Google Scholar
  19. 19.
    TOFFOLI, Tommaso, and Norman MARGOLUS, Cellular Automata Machines A New Environment for Modeling, MIT Press 1987.Google Scholar
  20. 20.
    TOFFOLI, Tommaso, and Norman MARGOLUS, “Invertible Cellular Automata: A Review”, Physica D 45 (1990), 229–253.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    TOFFOLI, Tommaso, and Norman MARGOLUS, “Programmable matter”, Physica D 47 (1991), 263–272.MathSciNetCrossRefGoogle Scholar
  22. 22.
    TOFFOLI, Tommaso, “Action, or the fungibility of computation”, Feynman and Computation (ed. Anthony HEY), Perseus 1998, 348–392.Google Scholar
  23. 23.
    ULAM, Stanislaw, “Random Processes and Transformations”, Proc. Int. Congr. Mathem. (held in 1950) 2 (1952), 264–275.MathSciNetGoogle Scholar
  24. 24.
    WOLFRAM, Stephen, “Computation Theory of Cellular Automata”, Commun. Math. Phys. 96 (1984), 15–57.CrossRefGoogle Scholar
  25. 25.
    ZUSE, Konrad, Rechnender Raum, Vieweg (Braunschweig) 1969; translated as “Calculating Space”, Tech. Transl. AZT-70–164-GEMIT (1970), MIT Project MAC.Google Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Tommaso Toffoli

There are no affiliations available

Personalised recommendations