Pulse Image Processing

  • Jason M. Kinser


The foundations of mammalian visual processing and popular digital image processing algorithms are vastly different. The mammalian system relies on cooperative pulsing activity of neurons to extract segments, textures, edges, and signatures. Popular digital algorithms tend to rely on statistical similarities. The success of the mammalian system justifies the creation of digital simulations and applications. Here a model of the mammalian visual cortex is used to generate several digital applications.


Face Recognition Anchor Point Image Signature Image Processing Application Neighboring Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eckhorn, R., Reitboeck, H. J., Arndt, M., Dicke, P., (1990) Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex. Neural Computation 2,293–307.CrossRefGoogle Scholar
  2. 2.
    Rybak, I.A., Shevtsova, N.A., Podladchkova, L.N., Golovan, A.V. (1991), A Visual Cortex Domain Model and Its Use for Visual Infonnation Processing. Neural Networks, 4, 3–13.CrossRefGoogle Scholar
  3. 3.
    Parodi, O., Combe, P., Ducom, J-C. (1996), Temporal coding in vision: coding by the spike arrival times leads to oscillations in the case of moving targets. Bio. Cybem. 74, 497–509.MATHCrossRefGoogle Scholar
  4. 4.
    Kinser, J.M., (1998) Hardware: Basic Requirements for Implementation, Proc. Of SPIE, 3728, Stockholm, 222–229.Google Scholar
  5. 5.
    Kinser, J. M., (2001), Image Signatures: Ontology and Classification, Fourth IASTED International Conference on Computer Graphics and Imaging.Google Scholar
  6. 6.
    Kinser, J. M., Nguyen, C., (2000) Pulse image processing using centripetal autowaves, Proc. SPIE, 4052, 278–284.Google Scholar
  7. 7.
    Kinser, J. M., Nguyen, C., (2000) Image object signatures from centripetal autowaves. Pattern Recognition Letters, 21(3), 221–225.CrossRefGoogle Scholar
  8. 8.
    McClurken, J. W., Zarbock, J. A., and Optican, L. M., (1994), Temporal Codes for Colors, Patterns and Memories, Cerebral Cortex, 10,443–467.Google Scholar
  9. 9.
    Kinser, J. M. (2001) Pulse Image Processing, Recent Developments in Pattern Recognition, Transworld Scientific, in press.Google Scholar
  10. 10.
    Lindblad, T., and Kinser, J., (1998), Image Processing using Pulse Coupled Neural Networks, Springer-Verlag.Google Scholar
  11. 11.
    Rao, R. P. N., Zelinsky, G. J., Hayhow, M. M., and Ballard, D. H., (1997), Eye Movements in Visual Cognition: A Computational Study, Tech. Rpt. 97.1, Natl. Resource Laboratory for the Study of Brain and Behavior, Univ. of Rochester.Google Scholar
  12. 12.
    Watanabe, T., Tanaka, M., Kurita, T., and Mishima, T., (1999), Autonomous foveating system based on the Pulse-Coupled Neural Network, Proc. of the IT4D;CSCC‘99, 1, 197–200.Google Scholar
  13. 13.
    Kinser, J. M., (1997), Pulse Images for Face Recognition, Face Recognition: From Theory to Applications, H. Wechsler, P. J. Phillips, V. Bruce, F. Fogelman Soulie, T. S. Huang, eds., NATO ASI Series, 163,503–512.Google Scholar
  14. 14.
    Brasher, J., and Kinser, J. M., (1994,) Fractional-Power Synthetic Discriminant Functions, Pattern Recognition, 27(4), 577–585.CrossRefGoogle Scholar
  15. 15.
    Schroeder, W., Martin, K., Lorensen, B., (1997) The Visualization Toolkit, 2nd Edition, Prentice Hall, New York.Google Scholar

Copyright information

© Springer-Verlag London 2002

Authors and Affiliations

  • Jason M. Kinser
    • 1
  1. 1.School of Computational SciencesGeorge Mason UniversityManassasUSA

Personalised recommendations