Skip to main content

The Behaving Human Neocortex as a Dynamic Network of Networks

  • Chapter
Computational Models for Neuroscience

Abstract

The neocortex is arguably the most sophisticated structure within the mammalian brain. It is the largest brain structure in the human, and its properties endow us with qualities that are unique to our species. In order to develop a systems-level approach to understanding the neocortex, and to develop a theoretical basis that is both tractable and useful, enormous anatomical and physiological simplifications must be made. These include focusing on specific aspects of function, such as associative memory and learning, at the expense of many other important characteristics. Such simplifications are required in any systems-level model of the brain.

The main contribution of this chapter is to describe a model of the neocortex that links together different scales or levels of neural organization. Specifically, individual neurons cluster together into networks, and these networks cluster together into larger networks, and so on. We argue that dynamically reconfigurable networks of neurons exist at multiple scales, and are fundamental to the structural and functional integrity of the cortex.

Experimental data supporting both the approach and the predictions of our neocortical model, termed the Network of Networks (NoN), are described. Section 7.2 summarizes some of the neurobiology relevant to the theoretical approach. The NoN is described in Section 7.3, where it is suggested that the model should do more than simply provide descriptors of neocortical organization function. Instead, it should lead to new ways of understanding and applying rapid, parallel and associative computations within and between neural networks at different scales. This is discussed in Section 7.4, where we investigate the model’s veracity in tests of predicatability and falsifiability. In the final section, implications of the NoN for neuroengineering are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.A. (1993) The BSB model: a simple nonlinear autoassociative network. In: M.H. Hassoun (Ed.) Associative Neural Memories: Theory and Implementation. Oxford: Oxford University Press.

    Google Scholar 

  • Anderson, J.A., Sutton J.P. (1995) The network of networks model. Proceedings of the World Congress of Neural Networks, Vol I., pp 145–152. Washington, DC: Erlbaum.

    Google Scholar 

  • Anderson, J.A., Sutton J.P. (1997) High performance computing and neural and physical processes: If we compute faster, do we understand better? Behavior Research Methods, Instruments, and Computers 29: 67–77.

    Google Scholar 

  • Brodal, A. (1981) Neurological Anatomy. New York: Oxford University Press.

    Google Scholar 

  • Brodmann, K. (1909) Vergleichende Lokalisationslehre der Grosshirnirinde. Leipzig: Barth.

    Google Scholar 

  • Brown, T.H., Kairiss, E.W., Keenan, C.L. (1990) Hebbian synapses: biophysical mechanisms and algorithms. Annu Rev Neurosci 13: 475–511.

    Article  Google Scholar 

  • Caplan, J., Benson, R., Hodgson, J., Bekken, K., Rosen, B., Sutton, J. (1998) Weightspace mapping of fMRI language tasks. In: J. Bower (Ed.) Computational Neuroscience: Trends in Research. New York: Plenum Press, pp. 585–590.

    Chapter  Google Scholar 

  • Chapin, J.K., Nicolelis, M.A. (1999) Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. J Neurosci Methods 94: 121–140.

    Article  Google Scholar 

  • Cohen, J.D., Perlstein, W.M., Braver, T.S., Nystrom, L.E., Noll, D.C., Jonides, J., Smith, E.E. (1997) Temporal dynamics of brain activation during a working memory task. Nature 386: 604–608.

    Article  Google Scholar 

  • Connors, B.W., Gutnick, M.J. (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13: 99–104.

    Article  Google Scholar 

  • Courtney, S.M., Ungerleider, L.G., Keil, K., Haxby, J.V. (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386: 608–611.

    Article  Google Scholar 

  • Friedrich, R.W., Laurent, G. (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291: 889–894.

    Article  Google Scholar 

  • Georgopoulos, A.P., Taira, M., Lukashin, A. (1993) Cognitive neurophysiology of the motor cortex. Science 260: 47–52.

    Article  Google Scholar 

  • Gupta, A., Wang, Y., Markram, H. (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273–278.

    Article  Google Scholar 

  • Hillis, W.D. (1985) The Connection Machine. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences USA 79: 2554–2558.

    Article  MathSciNet  Google Scholar 

  • Kandel, E.R., Schwartz J., Jessell, T.M. (Eds.) (1991) Principles of Neural Science. New York: Elsevier.

    Google Scholar 

  • Luce, D. (1986) Response Times. New York: Oxford University Press.

    Google Scholar 

  • Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E., Sejnowski, T.J. (2002) Dynamic brain sources of visual evoked responses. Science 295: 690–694.

    Article  Google Scholar 

  • Mason, R.D., Robertson, W. (1995) Mapping hierarchical neural networks to VLSI hardware. Neural Networks 8: 905–913.

    Article  Google Scholar 

  • McCulloch, W.S., Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophysics 9: 115–133.

    Article  MathSciNet  Google Scholar 

  • Mountcastle, V.B. (1978) An organizing principle for cerebral function: The unit module and the distributed system. In: G. Edelman, V.B Mountcastle (Eds.) The Mindful Brain. Cambridge, MA: MIT Press, pp. 7–50.

    Google Scholar 

  • Nicolelis, M.A., Ghazanfar, A.A., Stambaugh, C.R., Oliveira, L.M., Laubach, M., Chapin, J.K., Nelson, R.J., Kaas, J.H. (1998) Simultaneous encoding of tactile information by three primate cortical areas. Nat Neurosci 1: 621–630.

    Article  Google Scholar 

  • Pouget, A., Dayan, P., Zemel, R. (2000) Information processing with population-codes. Nat Rev Neurosci 1: 125–132.

    Article  Google Scholar 

  • Rockel, A.J., Hiorns, R.W., Powell, T.P.S. (1980) The basic uniformity of the neocortex. Brain 103: 221–244.

    Article  Google Scholar 

  • Sanes, J.N., Donoghue, J.P. (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23: 393–415.

    Article  Google Scholar 

  • Shepherd, G.M. (Ed.) (1990) The Synaptic Organization of the Brain. New York: Oxford University Press.

    Google Scholar 

  • Sutton, J.P. (1988) Hierarchical organization and disordered neural systems. Toronto: University of Toronto.

    Google Scholar 

  • Sutton, J.P. (1997) Network hierarchies in neural organization, development and pathology. In: C.J. Lumsden, W. Brandts, L.E.H Trainor (Eds.) Physical Theory in Biology. New Jersey: World Scientific, pp. 319–363.

    Google Scholar 

  • Sutton, J.P, Anderson, J.A. (1995) Computational and neurobiological features of a network of networks. In: J.M. Bower (Ed.) Neurobiology of Computation. Boston: Kluwer Academic, pp. 317–322.

    Chapter  Google Scholar 

  • Sutton, J.P, Anderson, J.A. (1998) System and method for high speed computing and feature recognition capturing aspects of neocortical computation. General Hospital Corporation and Brown University, US: Research Corporation.

    Google Scholar 

  • Sutton, J.P, Beis, J.S., Trainor, L.E.H. (1988a) Hierarchical model of memory and memory loss. Journal of Physics A: Mathematical and General 21: 4443–4454.

    Article  MATH  MathSciNet  Google Scholar 

  • Sutton, J.P., Beis, J.S., Trainor, L.E.H. (1988b) A hierarchical model of neocortical synaptic organization. Mathl. Comput. Modelling 11: 346–350.

    Article  MathSciNet  Google Scholar 

  • Sutton, J.P., Jamieson, I. (2001) Reconfigurable network of neural networks for autonomous sensing and analysis. Fifth International Conference on Cognitive and Neural Systems, 2001: 64.

    Google Scholar 

  • Sutton, J.P., Jamieson, I.M.D. (2002) Reconfigurable networking for coordinated multi-agent sensing and communications. In: H.J. Caulfield et al. (Eds.) Sixth Joint Conference on Informational Sciences. Research Triangle, North Carolina: Association for Intelligent Machinery: 36.

    Google Scholar 

  • Szentagothai, J. (1977) The neuron network of the cerebral cortex. Proc. R. Soc. Lond. B. 201: 219–248.

    Article  Google Scholar 

  • Tanaka, K. (1993) Neuronal mechanism of object recognition. Science 262: 685–689.

    Article  Google Scholar 

  • Ts’o, D.Y., Frostig, R.D., Lieke, E.E., Grinvald, A. (1990) Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249: 417–420.

    Article  Google Scholar 

  • Van Essen, D.C., Anderson, C.H., Felleman, D.J. (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255: 419–423.

    Article  Google Scholar 

  • Wilson, M.A., McNaughton, B.L. (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265: 676–679.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sutton, J.P., Strangman, G. (2003). The Behaving Human Neocortex as a Dynamic Network of Networks. In: Hecht-Nielsen, R., McKenna, T. (eds) Computational Models for Neuroscience. Springer, London. https://doi.org/10.1007/978-1-4471-0085-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0085-0_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-593-9

  • Online ISBN: 978-1-4471-0085-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics