Skip to main content

Performance of Intelligent Systems Governed by Internally Generated Goals

  • Chapter
  • 241 Accesses

Abstract

Intelligent behavior is characterized by flexible and creative pursuit of endogenously defined goals. It has emerged in humans through the stages of evolution that are manifested in the brains and behaviors of other vertebrates. Perception is a key concept by which to link brain dynamics to goal-directed behavior. This archetypal form of intentional behavior is an act of observation into time and space, by which information is sought to guide future action, and by which the perceiver modifies itself through learning from the sensory consequences of its own actions. Chaotic brain dynamics creates the goals, expresses them by means of behavioral actions, and defines the meaning of the requested information. These acts include the making of representations (e.g. numbers, words, graphs, sounds, gestures) for communication to other brains in validation and coordination of experience. The failure of artificial intelligence to achieve its stated aims can be attributed to taking too literally these man-made descriptive representations as the tokens of brain action, whereas in brains there is no information, only dynamic flows and operators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrie, M., Freeman, W.J., Lenhart, M. (1996) Modulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbits. Journal of Neurophysiology 76: 520–539.

    Google Scholar 

  • Blum, L., Shub, M., Smale, S. (1989) On a theory of computation and complexity over the real numbers. Bulletin of the American Mathematical Society 21: 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Bures, J., Buresová, O., Krivánek, J. (1974) The Mechanism and Applications of Leão’s Spreading Depression of Electroencephalographic Activity. New York: Academic Press.

    Google Scholar 

  • Chang, H.J., Freeman, W.J. (1996) Parameter optimization in models of the olfactory system. Neural Networks 9: 1–14.

    Article  Google Scholar 

  • Clark, A. (1996) Being There: Putting Brain, Body, and World Together Again. Cambridge MA: MIT Press.

    Google Scholar 

  • Clark, R.E., Squire, L.R. (1998) Classical conditioning and brain systems: The role of awareness. Science 280: 77–81.

    Article  Google Scholar 

  • Freeman, W.J. (1975) Mass Action in the Nervous System. New York: Academic Press.

    Google Scholar 

  • Freeman, W.J. (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics 56: 139–150.

    Article  MATH  Google Scholar 

  • Freeman, W.J. (1988) Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalographic (EEG) potential. IEEE Trans. Circuits & Systems 35: 781–783.

    Article  MathSciNet  Google Scholar 

  • Freeman, W.J. (1991) The physiology of perception. Scientific American 264: 78–85.

    Article  Google Scholar 

  • Freeman, W.J. (1992) Tutorial in neurobiology: From single neurons to brain chaos. International Journal of Bifurcation and Chaos 2: 451–482.

    Article  MATH  Google Scholar 

  • Freeman, W.J. (1995) Societies of Brains. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Freeman, W.J. (1996) Random activity at the microscopic neural level in cortex (“noise”) sustains and is regulated by low-dimensional dynamics of macroscopic cortical activity (“chaos”). International Journal of Neural Systems 7: 473–480.

    Article  Google Scholar 

  • Freeman, W.J. (2000) Neurodynamics: An Exploration in Mesoscopic Brain Dynamics. London: Springer Verlag.

    Book  MATH  Google Scholar 

  • Freeman, W.J. (2001) How Brains Make Up Their Minds. New York: Columbia University Press.

    Google Scholar 

  • Freeman, W.J., Baird, B. (1989) Effects of applied electric current fields on cortical neural activity. In: E. Schwartz (Ed.) Computational Neuroscience (pp. 274–287). New York: Plenum Press.

    Google Scholar 

  • Freeman, W.J., Chang, H.J., Burke, B.C., Rose, P.A., Badler, J. (1997) Taming chaos: Stabilization of aperiodic attractors by noise. IEEE Transactions on Circuits and Systems 44: 989–996.

    Article  MathSciNet  Google Scholar 

  • Freeman, W.J., Schneider, W. (1982) Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19: 44–56.

    Article  Google Scholar 

  • Goltz, F.L. (1892) Der Hund ohne Grosshirn. Siebente Abhandlung über die Verrichtungen des Grosshirns. Pflügers Archiv 51: 570–614.

    Article  Google Scholar 

  • Grajski, K.A., Freeman, W.J. (1989) Spatial EEG correlates of non-associative and associative learning in rabbits. Behavioral Neuroscience 103: 790–804.

    Article  Google Scholar 

  • Gray, C.M., Freeman, W.J. (1987) Induction and maintenance of epileptiform activity in the rabbit olfactory bulb depends on centrifugal input. Experimental Brain Research 68: 210–212.

    Article  Google Scholar 

  • Gray, C.M., Freeman W.J., Skinner, J.E. (1986) Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial-pattern change depends on norepinephrine. Behavioral Neuroscience 100: 585–596.

    Article  Google Scholar 

  • Gray, C.M., Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences (USA) 86: 1698–1702.

    Article  Google Scholar 

  • Hardcastle, V.G. (1994) Psychology’s binding problem and possible neurobiological solutions. Journal of Consciousness Studies 1: 66–90.

    Google Scholar 

  • Helmholtz, H. von (1879/1925) Treatise on Physiological Optics: Vol. 3. The Perceptions of Vision (J.P.C. Southall, Trans.). Rochester NY: Optical Society of America.

    Google Scholar 

  • Hendriks-Jansen, H. (1996) Catching ourselves in the act: Situated activity, interactive emergence, evolution, and human thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Herrick, C.J. (1948) The Brain of the Tiger Salamander. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Kaneko, K. (1986) Collapse of Tori and Genesis of Chaos in Dissipative Systems. Singapore: World Scientific.

    MATH  Google Scholar 

  • Kay, L.M., Freeman, W.J. (1998) Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behavioral Neuroscience 112: 541–553.

    Article  Google Scholar 

  • Kay, L.M., Lancaster, L., Freeman, W.J. (1996) Reafference and attractors in the olfactory system during odor recognition. International Journal of Neural Systems 7: 489–496.

    Article  Google Scholar 

  • O’Keefe, J., Nadel, L. (1978) The Hippocampus as a Cognitive Map. Oxford, UK: Clarendon.

    Google Scholar 

  • Ramón y Cajal, S. (1911) Histologie du Systeme Nerveux de l’Homme et des Vertèbres (Vols. I and II). Paris: Maloine.

    Google Scholar 

  • Roth, G. (1987) Visual Behavior in Salamanders. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Shaw, G.L., Palm, G. (Eds.) (1988) Brain Theory. Reprint Volume. Singapore: World Scientific.

    Google Scholar 

  • Singer, W., Gray, C.M. (1995) Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience 18: 555–586.

    Article  Google Scholar 

  • Sperry, R.W. (1958) Physiological plasticity and brain circuit theory. In: H.F. Harlow, C.N. Woolsey (Eds.) Biological and Biochemical Bases of Behavior (pp. 401–424). Madison, WI: University of Wisconsin Press.

    Google Scholar 

  • Taga, G. (1994) Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica. D. 75: 190–208.

    Article  MATH  Google Scholar 

  • Tani, J. (1996) Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Transactions on Systems, Man and Cybernetics 26B: 421–436.

    Google Scholar 

  • von Hoist, E., Mittelstadt, H. (1950) Das Reafferenzprinzip (Wechselwirkung zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37: 464476.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London Limited

About this chapter

Cite this chapter

Freeman, W.J. (2003). Performance of Intelligent Systems Governed by Internally Generated Goals. In: Hecht-Nielsen, R., McKenna, T. (eds) Computational Models for Neuroscience. Springer, London. https://doi.org/10.1007/978-1-4471-0085-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0085-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-593-9

  • Online ISBN: 978-1-4471-0085-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics