Piezoelectrically Actuated Robotic End-Effector with Strain Amplification Mechanisms

  • Jun Ueda
Part of the Microsystems book series (MICT, volume 23)


This chapter describes a nested rhombus multilayer mechanism for large effective-strain piezoelectric actuators. This hierarchical nested architecture encloses smaller flextensional actuators with larger amplifying structures so that a large amplification gain on the order of several hundreds can be obtained. A prototype nested PZT cellular actuator that weighs only 15 g produces 21% effective strain (2.53 mm displacement from 12 mm actuator length and 30 mm width) and 1.69 N blocking force. A lumped parameter model is proposed to represent the mechanical compliance of the nested strain amplifier. This chapter also describes the minimum switching discrete switching vibration suppression (MSDSVS) approach for flexible robotic systems with redundancy in actuation. The MSDSVS method reduces the amplitude of oscillation when applied to the redundant, flexible actuator units. A tweezer-style end-effector is developed based on the rhombus multilayer mechanism. The dimensions of the end-effector are determined by taking the structural compliance into account. The assembled robotic end-effector produces 1.0 N of force and 8.8 mm of displacement at the tip.


Effective Strain Piezoelectric Actuator Lump Parameter Model Structural Compliance Amplification Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially supported by National Science Foundation grant, Cyber-Physical Systems, ECCS-0932208. The author expresses his gratitude to Mr. Fuyuki Sugihara, formerly with Nara Institute of Science and Technology, Japan, for the design and fabrication of the tweezer-type end-effector.


  1. 1.
  2. 2.
    Fukui I, Yano T, Kamatsuki T (1984) Lever actuator comprising a longitudinal-effect electroexpansive transducer. US Patent 4,435,666Google Scholar
  3. 3.
    MacGregor R (2003) Shape memory alloy actuators and control methods. US Patent 6,574,958Google Scholar
  4. 4.
    Conway N, Traina Z, Kim S (2007) A strain amplifying piezoelectric MEMS actuator. J Micromech Microeng 17(4):781–787CrossRefGoogle Scholar
  5. 5.
    Diaz IM, Pereira E, Feliu V, Cela JJL (2009) Concurrent design of multimode input shapers and link dynamics for flexible manipulators. IEEE/ASME Trans Mechatron 15(4):646–651. DOI 10.1109/TMECH.2009.2031434CrossRefGoogle Scholar
  6. 6.
    Dogan A, Uchino K, Newnham R (1997) Composite piezoelectric transducer with truncated conical endcaps “cymbal”. IEEE Trans Ultrason Ferroelectrics Freq Contr 44(3):597–605 DOI 10.1109/58.658312CrossRefGoogle Scholar
  7. 7.
    Dogan A, Xu Q, Onitsuka K, Yoshikawa S, Uchino K, Newnham R (1994) High displacement ceramic metal composite actuators (moonies). Ferroelectrics 156(1):1–6CrossRefGoogle Scholar
  8. 8.
    Ervin J, Brei D (1998) Recurve piezoelectric-strain-amplifying actuator architecture. IEEE/ASME Trans Mechatron 3(4):293–301CrossRefGoogle Scholar
  9. 9.
    Fiene J, Niemeyer G (2006) Toward switching motor control. IEEE/ASME Trans Mechatron 11(1): 27–34. DOI 10.1109/TMECH.2005.863368CrossRefGoogle Scholar
  10. 10.
    Haertling G (1994) Rainbow ceramics—a new type of ultra-high-displacement actuator. Am Ceram Soc Bull 73(1):93–96Google Scholar
  11. 11.
    Janker P, Christmann M, Hermle F, Lorkowski T, Storm S (1999) Mechatronics using piezoelectric actuators. J Eur Ceram Soc 19(6):1127–1131 (1999)CrossRefGoogle Scholar
  12. 12.
    Kostyukov AI (1998) Muscle hysteresis and movement control: a theoretical study. Neuroscience 83(1):303–320CrossRefGoogle Scholar
  13. 13.
    Kurita Y, Sugihara F, Ueda J, Ogasawara T (2010) MRI compatible robot gripper using large-strain piezoelectric actuators. Trans Jpn Soc Mech Eng C 76(761):132–141Google Scholar
  14. 14.
    Lim S, Stevens H, How JP (1999) Input shaping for multi-input flexible systems. ASME J Dyn Syst Meas Contr 121:443–447CrossRefGoogle Scholar
  15. 15.
    MacNair D, Ueda J (2009) Modeling & characterizing stochastic actuator arrays. In: IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009, St. Louis, USA, October 11–15, pp 3232–3237Google Scholar
  16. 16.
    Moskalik A, Brei D (1997) Quasi-static behavior of individual C-block piezoelectric actuators. J Intell Mater Syst Struct 8(7):571–587CrossRefGoogle Scholar
  17. 17.
    Newnham R, Dogan A, Xu Q, Onitsuka K, Tressler J, Yoshikawa S (1993) Flextensional moonie actuators. In: 1993 I.E. proceedings on ultrasonics symposium, vol 1, pp 509–513. DOI 10.1109/ULTSYM.1993.339557Google Scholar
  18. 18.
    Niezrecki C, Brei D, Balakrishnan S, Moskalik A (2001) Piezoelectric actuation: state of the art. Shock Vib Digest 33(4):269–280. DOI 10.1177/058310240103300401CrossRefGoogle Scholar
  19. 19.
    Nurung S, Magsino KC, Nilkhamhang I (2009) Force estimation using piezoelectric actuator with adaptive control. In: Proceedings of international conference on electrical engineering/electronics, computer, telecommunications and information technology, pp 350–353Google Scholar
  20. 20.
    Pao LY (1996) Input shaping design for flexible systems with multiple actuators. In: Proceedings of the 13th world congress of the international federation of automatic control, San FranciscoGoogle Scholar
  21. 21.
    Ronkanen P, Kallio P, Koivo HN (2007) Simultaneous actuation and force estimation using piezoelectric actuators. In: Proceedings of international conference on mechatronics and automation, Harbin, China, August 5–8, pp 3261–3265Google Scholar
  22. 22.
    Schultz J, Ueda J (2009) Discrete switching vibration suppression for flexible systems with redundant actuation. In: IEEE/ASME international conference on advanced intelligent mechatronics, 2009. AIM 2009, Singapore, July 14–17, pp 544–549Google Scholar
  23. 23.
    Secord T, Ueda J, Asada H (2008) Dynamic analysis of a high-bandwidth, large-strain, pzt cellular muscle actuator with layered strain amplification. In: Proceedings of 2008 I.E. international conference on robotics and automation (ICRA 2008), Pasadena, CA, USA, May 19–23, pp 761–766Google Scholar
  24. 24.
    Seffen K, Toews E (2004) Hyperhelical actuators: coils and coiled-coils. In: 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Palm Springs California, April 19–22, pp 19–22Google Scholar
  25. 25.
    Shimizu T, Shikida M, Sato K, Itoigawa K, Hasegawa Y (2002) Micromachined active tactile sensor for detecting contact force and hardness of an object. In: Proceedings of international symposium on micromechatronics and human science, Nagoya, Japan, Oct. 20–23, pp 67–71Google Scholar
  26. 26.
    Singer NC, Seering WP (1990) Preshaping command inputs to reduce system vibration. ASME J Dyn Syst Meas Contr 112:76–82CrossRefGoogle Scholar
  27. 27.
    Stanley W, Jacob MD (1982) Structure and function in man, 5th edn. W B Saunders Co, Philadelphia.
  28. 28.
    Tansocka J, Williamsa C (1992) Force measurement with a piezoelectric cantilever in a scanning force microscope. Ultramicroscopy 42–44(2):1464–1469CrossRefGoogle Scholar
  29. 29.
    Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer Academic Publishers, BostonGoogle Scholar
  30. 30.
    Ueda J, Odhnar L, Asada H (2006) A broadcast-probability approach to the control of vast dof cellular actuators. In: Proceedings of 2006 I.E. international conference on robotics and automation (ICRA ’06), Orlando, Florida, May 15–19, pp 1456–1461Google Scholar
  31. 31.
    Ueda J, Odhner L, Asada HH (2007) Broadcast feedback for stochastic cellular actuator systems consisting of nonuniform actuator units. In: Proceedings of 2007 I.E. international conference on robotics and automation (ICRA ’07), pp 642–647. DOI 10.1109/ROBOT.2007.363059Google Scholar
  32. 32.
    Ueda J, Odhner L, Asada HH (2007) Broadcast feedback of stochastic cellular actuators inspired by biological muscle control. Int J Robot Res 26(11–12):1251–1265. DOI 10.1177/0278364907082443CrossRefGoogle Scholar
  33. 33.
    Ueda J, Secord T, Asada H (2008) Piezoelectric cellular actuators using nested rhombus multilayer mechanisms. In: First annual dynamic systems and control conference (DSCC 2008), Ann Arbor, Michigan, October 20–22Google Scholar
  34. 34.
    Ueda J, Secord T, Asada H (2008) Static lumped parameter model for nested PZT cellular actuators with exponential strain amplification mechanisms. In: IEEE international conference on robotics and automation, 2008. ICRA 2008, Pasadena, CA, USA, May 19–23, pp 3582–3587Google Scholar
  35. 35.
    Ueda J, Secord T, Asada H (2010) Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Trans Mechatron 15:770–782CrossRefGoogle Scholar
  36. 36.
    Yamaguchi G (2001) Dynamic modeling of musculoskeletal motion. Kluwer Academic Publishers, BostonMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations