Skip to main content

Helium as a Quantum Fluid

  • Chapter
  • First Online:
Book cover Helium Cryogenics

Part of the book series: International Cryogenics Monograph Series ((ICMS))

  • 2573 Accesses

Abstract

A system of non-interacting particles obeying quantum statistics is considered to be an ideal quantum gas. There are a number of physical systems in nature that display quantum gas behavior. Common examples include the behavior of electrons and phonons in solids. Also, low density gas molecules at low temperatures can show quantum mechanical behavior as we discussed in Chap. 3. Of most recent interest are gases made up of Rb or H atoms that undergo Bose-Einstein condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  2. K. Huang, Statistical Mechanics, Wiley, New York, 1963.

    Google Scholar 

  3. Data from HEPAK®.

    Google Scholar 

  4. F. London, Superfluids, Vol. II, Dover Publications, New York, 1954.

    MATH  Google Scholar 

  5. L. Tisza, The λ-Transition Explained. Nature, Vol. 141, p 913 (1938).

    Article  Google Scholar 

  6. C. J. Gorter and H. Cashmir, Physica 1, 305 (1934) or see F. London, Superfluids Vol. 1, Dover, NY, 1960, pp. 15–19.

    Google Scholar 

  7. L. Landau, Theory of the Superfluidity of Helium II. Phys. Rev., Vol. 60, No. 4, 356 (1941).

    Article  MATH  Google Scholar 

  8. J. Wilks, Liquid and Solid Helium, Clarendon Press, Oxford, 1967.

    Google Scholar 

  9. J. Maynard, Determination of the Thermodynamics of He II from Second Sound Data, Phys. Rev. B14, 3868 (1976).

    Google Scholar 

  10. V. Peshkov, Determination of the Velocity of Propagation of the Second Sound in He II, J. Phys. (USSR) 10, 389 (1946).

    Google Scholar 

  11. R. J. Donnelly, The Two-Fluid Theory and Second Sound in Liquid Helium, Phys. Today Vol. 62, 34 (2009).

    Article  Google Scholar 

  12. E. L. Andronikashvili, Zh. Esksp. Theor. Fiz. 16, 780 (1946); 18, 424 (1948).

    Google Scholar 

  13. D. V. Osborne, The Rotation of Liquid Helium II, Proc. Phys. Soc. A63, 909 (1950).

    Google Scholar 

  14. G. A. Williams and R. E. Packard, Photographs of Quantized Vortex Lines in Rotating He II, Phys. Rev. Lett. 33, 280 (1974); E. A. Yarmchuk and R. E. Packard, Photographic Studies of Quantized Vortex Lines, J. Low Temp. Phys. 46, 479 (1982).

    Article  Google Scholar 

  15. G. P. Bewley, D. P. Lathrop, K. Sreenivasan, Superfluid Helium: Visualization of quantized vortices, Nature 441, 558 (2006).

    Article  Google Scholar 

  16. R. P. Feynmann, Application of Quantum Mechanics to Liquid Helium, in Progress in Low Temperature Physics, C. J. Gorter (Ed.), Vol. I, p. 17, North Holland Publishing, Amsterdam, 1955.

    Chapter  Google Scholar 

  17. C. J. Gorter and J. H. Mellink, On the Irreversible Processes in Liquid Helium II, Physica XV, 285 (1949).

    Article  Google Scholar 

  18. T. Chagovets and S. W. Van Sciver, A Study of Thermal Counterflow using PTV, Phys. Fluids, Vol. 23, 107102 (2011).

    Google Scholar 

  19. W. F. Vinen, Theory of the Mutual Friction, Proc. R. Soc. (London) A242, 493 (1957).

    Google Scholar 

  20. J. T. Tough, Superfluid Turbulence, in Progress in Low Temperature Physics, D. F. Brewer (Ed.), Vol. VIII, Chap. 3, North Holland Publishing, Amsterdam, 1982.

    Google Scholar 

  21. K. W. Schwarz, Turbulence in Superfluid Helium: Steady Homogeneous Counterflow, Phys. Rev. 18, 245 (1978).

    Article  Google Scholar 

  22. V. Arp, Heat Transport through Helium II, Cryogenics 10, 96 (1970).

    Article  Google Scholar 

  23. W. F. Vinen, Experiments on Steady Heat Currents, Proc. R. Soc. London A240, 114 (1957).

    Google Scholar 

  24. S. W. Van Sciver, Kapitza Conductance of Aluminum and Heat Transport Through Subcooled He II, Cryogenics 18, 521 (1978).

    Article  Google Scholar 

  25. D. F. Brewer and D. O. Edwards, Heat Conduction by Liquid Helium II in Capillary Tubes. III. Mutual Friction, Philos. Mag. 7, 721 (1962).

    Article  Google Scholar 

  26. W. F. Vinen, Critical Heat Currents in Wide Channels, Proc. R. Soc. London A243, 400 (1957).

    Google Scholar 

  27. W. F. Vinen, Experiments on Transient Effects, Proc. R. Soc. London A240, 128 (1957).

    Google Scholar 

  28. C. E. Chase, Thermal Conduction in Liquid Helium II. I. Temperature Dependence Effects of Channel Geometry, Phys. Rev. 127, 361 (1962); Thermal Conduction in Liquid Helium II. Phys. Rev. 131, 1898 (1963).

    Article  Google Scholar 

  29. T. N. Turner, Using Second Sound Shock Waves to Probe the Intrinsic Critical Velocity of Liquid Helium II, Phys. Fluids Vol. 26, 3227 (1983).

    Article  Google Scholar 

  30. J. R. Torczynski, On the Interaction of Second Sound Shock Waves and Vorticity in Superfluid Helium, Phys. Fluids Vol. 27, 2636 (1984).

    Article  Google Scholar 

  31. T. Shimazaki, M. Murakami, and T. Iida Second Sound Wave Heat Transfer, Thermal Boundary Layer Formation and Boiling: Highly Transient Heat Transport Phenomena in He II, Cryogenics Vol. 35, 645 (1995).

    Article  Google Scholar 

  32. D. K. Hilton and S. W. Van Sciver, Direct Measurements of Quantum Turbulence Induced by Second Sound Shock Pulses in Helium II, J. Low Temp. Phys. Vol . 141, 501 (2005).

    Article  Google Scholar 

Further Readings

  • K. R. Atkins, Liquid Helium, Cambridge University Press, Cambridge, 1959.

    MATH  Google Scholar 

  • T. Guenault, Basic Superfluids, Taylor Francis, London, 2003.

    Book  MATH  Google Scholar 

  • K. Huang, Statistical Mechanics, Wiley, New York, 1963.

    Google Scholar 

  • W. E. Keller, Helium-3 and Helium-4, Plenum Press, New York, 1969.

    Google Scholar 

  • L. D. Landau and E. M. Lifshitz, Statistical Physics, Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  • F. London, Superfluids, Vol. II, Dover Publications, New York, 1954.

    MATH  Google Scholar 

  • S.J. Putterman, Superfluid Hydrodynamics, Elsvier, Amsterdam, 1974.

    Google Scholar 

  • D. R. Tilley and J. Tilley, Superfluidity and Superconductivity, Adan Hilger, Boston, 1986.

    Google Scholar 

  • J. Wilks, Liquid and Solid Helium, Clarendon Press, Oxford, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Van Sciver .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Van Sciver, S.W. (2012). Helium as a Quantum Fluid. In: Helium Cryogenics. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9979-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9979-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9978-8

  • Online ISBN: 978-1-4419-9979-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics