Skip to main content

Epigenetic Therapies in MDS and AML

  • Chapter
  • First Online:
Epigenetic Alterations in Oncogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((volume 754))

Abstract

The use of low dose hypomethylating agents for patients with myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (AML) has had made a significant impact. In the past, therapies for these diseases were limited and patients who elected to receive treatment were subject to highly toxic, inpatient chemotherapeutics, which were often ineffective. In the era of hypomethylating agents (azacitidine and decitabine), a patient with high grade MDS or AML with multilineage dysplasia can be offered the alternative of outpatient, relatively low-toxicity therapy. Despite the fact that CR (CR) rates to such agents remain relatively low at 15–20%, a much larger percentage of patients will have clinically significant improvements in hemoglobin, platelet, and neutrophil counts while maintaining good outpatient quality of life. As our clinical experience with azanucleotides expands, questions regarding patient selection, optimal dosing strategy, latency to best response and optimal duration of therapy following disease progression remain, but there is no question that for some patients these agents offer, for a time, an almost miraculous clinical benefit. Ongoing clinical trials in combination and in sequence with conventional therapeutics, with other epigenetically active agents, or in conjunction with bone marrow transplantation continue to provide promise for optimization of these agents for patients with myeloid disease. Although the mechanism(s) responsible for the proven efficacy of these agents remain a matter of some controversy, activity is thought to stem from induction of DNA hypomethylation, direct DNA damage, or possibly even immune modulation; there is no question that they have become a permanent part of the armamentarium against myeloid neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100:2292–2302

    Article  PubMed  CAS  Google Scholar 

  2. Greenberg PL (1998) Risk factors and their relationship to prognosis in myelodysplastic syndromes. Leuk Res 22(Suppl 1):S3–S6

    Article  PubMed  Google Scholar 

  3. Menzin J, Lang K, Earle CC, Kerney D, Mallick R (2002) The outcomes and costs of acute myeloid leukemia among the elderly. Arch Intern Med 162:1597–1603

    Article  PubMed  Google Scholar 

  4. Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341:1051–1062

    Article  PubMed  CAS  Google Scholar 

  5. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (2011) SEER Cancer Statistics Review, 1975-2008, National Cancer Institute. Bethesda, MD, based on November 2010 SEER data submission, posted to the SEER web site

    Google Scholar 

  6. Kantarjian H, O’brien S, Cortes J, Giles F, Faderl S, Jabbour E, Garcia-Manero G, Wierda W, Pierce S, Shan J, Estey E (2006) Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 106:1090–1098

    Article  PubMed  Google Scholar 

  7. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A, Gore SD, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman L, McKenzie D, Beach C, Silverman LR (2009) International Vidaza High-Risk MDS Survival Study Group: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10:223–232

    Article  PubMed  CAS  Google Scholar 

  8. Tilly H, Castaigne S, Bordessoule D, Casassus P, Le Prise PY, Tertian G, Desablens B, Henry-Amar M, Degos L (1990) Low-dose cytarabine versus intensive chemotherapy in the treatment of acute nonlymphocytic leukemia in the elderly. J Clin Oncol 8:272–279

    PubMed  CAS  Google Scholar 

  9. Gardin C, Turlure P, Fagot T, Thomas X, Terre C, Contentin N, Raffoux E, de Botton S, Pautas C, Reman O, Bourhis JH, Fenaux P, Castaigne S, Michallet M, Preudhomme C, de Revel T, Bordessoule D, Dombret H (2007) Postremission treatment of elderly patients with acute myeloid leukemia in first complete remission after intensive induction chemotherapy: results of the multicenter randomized Acute Leukemia French Association (ALFA) 9803 trial. Blood 109:5129–5135

    Article  PubMed  CAS  Google Scholar 

  10. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C, Ravandi F, Helmer R III, Shen L, Nimer SD, Leavitt R, Raza A, Saba H (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    Article  PubMed  CAS  Google Scholar 

  11. Cheson BD, Bennett JM, Kantarjian H, Pinto A, Schiffer CA, Nimer SD, Lowenberg B, Beran M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Wijermans PW, Gore S, Greenberg PL (2000) World Health Organization(WHO) international working group: Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood 96:3671–3674

    PubMed  CAS  Google Scholar 

  12. Cheson BD, Cassileth PA, Head DR, Schiffer CA, Bennett JM, Bloomfield CD, Brunning R, Gale RP, Grever MR, Keating MJ (1990) Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 8:813–819

    PubMed  CAS  Google Scholar 

  13. Lubbert M, Suciu S, Baila L, Ruter BH, Platzbecker U, Giagounidis A, Selleslag D, Labar B, Germing U, Salih HR, Beeldens F, Muus P, Pfluger KH, Coens C, Hagemeijer A, Eckart Schaefer H, Ganser A, Aul C, de Witte T, Wijermans PW (2011) Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol 29:1987–1996

    Article  PubMed  Google Scholar 

  14. Kadia TM, Jabbour E, Kantarjian H (2011) Failure of hypomethylating agent-based therapy in myelodysplastic syndromes. Semin Oncol 38:682–692

    Article  PubMed  CAS  Google Scholar 

  15. Yang X, Lay F, Han H, Jones PA (2010) Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci 31:536–546

    Article  PubMed  Google Scholar 

  16. Weiss AJ, Stambaugh JE, Mastrangelo MJ, Laucius JF, Bellet RE (1972) Phase I study of 5-azacytidine (NSC-102816). Cancer Chemother Rep 56:413–419

    PubMed  CAS  Google Scholar 

  17. Karon M, Sieger L, Leimbrock S, Finklestein JZ, Nesbit ME, Swaney JJ (1973) 5-Azacytidine: a new active agent for the treatment of acute leukemia. Blood 42:359–365

    PubMed  CAS  Google Scholar 

  18. McCredie KB, Bodey GP, Burgess MA, Gutterman JU, Rodriguez V, Sullivan MP, Freireich EJ (1973) Treatment of acute leukemia with 5-azacytidine (NSC-102816). Cancer Chemother Rep 57:319–323

    PubMed  CAS  Google Scholar 

  19. Constantinides PG, Taylor SM, Jones PA (1978) Phenotypic conversion of cultured mouse embryo cells by aza pyrimidine nucleosides. Dev Biol 66:57–71

    Article  PubMed  CAS  Google Scholar 

  20. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    Article  PubMed  CAS  Google Scholar 

  21. Jones PA, Taylor SM (1981) Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells. Nucleic Acids Res 9:2933–2947

    Article  PubMed  CAS  Google Scholar 

  22. Quesnel B, Guillerm G, Vereecque R, Wattel E, Preudhomme C, Bauters F, Vanrumbeke M, Fenaux P (1998) Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 91:2985–2990

    PubMed  CAS  Google Scholar 

  23. Esteller M (2003) Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 109:80–88

    Article  PubMed  CAS  Google Scholar 

  24. Voso MT, Scardocci A, Guidi F, Zini G, Di Mario A, Pagano L, Hohaus S, Leone G (2004) Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood 103:698–700

    Article  PubMed  CAS  Google Scholar 

  25. Silverman LR, Holland JF, Weinberg RS, Alter BP, Davis RB, Ellison RR, Demakos EP, Cornell CJ Jr (1993) Carey RW, Schiffer C: Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 7(Suppl 1):21–29

    PubMed  Google Scholar 

  26. Chitambar CR, Libnoch JA, Matthaeus WG, Ash RC, Ritch PS, Anderson T (1991) Evaluation of continuous infusion low-dose 5-azacytidine in the treatment of myelodysplastic syndromes. Am J Hematol 37:100–104

    Article  PubMed  CAS  Google Scholar 

  27. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, Stone RM, Nelson D, Powell BL, DeCastro CM, Ellerton J, Larson RA, Schiffer CA, Holland JF (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    Article  PubMed  CAS  Google Scholar 

  28. Silverman LR, McKenzie DR, Peterson BL, Holland JF, Backstrom JT, Beach CL, Larson RA (2006) Cancer and Leukemia Group B: Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 24:3895–3903

    Article  PubMed  CAS  Google Scholar 

  29. Heim S (1992) Cytogenetic findings in primary and secondary MDS. Leuk Res 16:43–46

    Article  PubMed  CAS  Google Scholar 

  30. Arber DA, Brunning RD, Orazi A et al (2008) Acute myeloid leukaemaia with myelodysplastic-related changes. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumors of haematopoietic and lympohoid tissues (4th edn). Lyon, International Agency for Research on Cancer

    Google Scholar 

  31. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 17:3835–3849

    PubMed  CAS  Google Scholar 

  32. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U, Sanz G, List AF, Gore S, Seymour JF, Dombret H, Backstrom J, Zimmerman L, McKenzie D, Beach CL, Silverman LR (2010) Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 28:562–569

    Article  PubMed  CAS  Google Scholar 

  33. Maurillo L, Venditti A, Spagnoli A, Gaidano G, Ferrero D, Oliva E, Lunghi M, D’Arco AM, Levis A, Pastore D, Di Renzo N, Santagostino A, Pavone V, Buccisano F, Musto P (2012) Azacitidine for the treatment of patients with acute myeloid leukemia: Report of 82 patients enrolled in an Italian compassionate program. Cancer 118:1014–1022

    Article  PubMed  CAS  Google Scholar 

  34. Al-Ali HK, Jaekel N, Junghanss C, Maschmeyer G, Krahl R, Cross M, Hoppe G, Niederwieser D (2012) Azacitidine in patients with acute myeloid leukemia medically unfit for or resistant to chemotherapy: a multicenter phase I/II study. Leuk Lymphoma 53:110–117

    Article  PubMed  CAS  Google Scholar 

  35. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, Liu S, Havelange V, Becker H, Schaaf L, Mickle J, Devine H, Kefauver C, Devine SM, Chan KK, Heerema NA, Bloomfield CD, Grever MR, Byrd JC, Villalona-Calero M, Croce CM, Marcucci G (2010) Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA 107:7473–7478

    Article  PubMed  CAS  Google Scholar 

  36. Lyons RM, Cosgriff TM, Modi SS, Gersh RH, Hainsworth JD, Cohn AL, McIntyre HJ, Fernando IJ, Backstrom JT, Beach CL (2009) Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes. J Clin Oncol 27:1850–1856

    Article  PubMed  CAS  Google Scholar 

  37. Prebet T, Sun Z, Ketterling RP, Hicks G, Beach CL, Greenberg PL, Paietta EM, Czader M, Gabrilove J, Erba H, Tallman MS, Gore SD (2010) A 10 day schedule of azacitidine induces more complete cytogenetic remissions than the standard schedule in myelodysplasia and acute myeloid leukemia with myelodysplasia-related changes: results of the E1905 US Leukemia Intergroup Study. Blood 116(21):Abst. 4013

    Google Scholar 

  38. Marcucci G, Silverman L, Eller M, Lintz L, Beach CL (2005) Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 45:597–602

    Article  PubMed  CAS  Google Scholar 

  39. Martin MG, Walgren RA, Procknow E, Uy GL, Stockerl-Goldstein K, Cashen AF, Westervelt P, Abboud CN, Kreisel F, Augustin K, Dipersio JF, Vij R (2009) A phase II study of 5-day intravenous azacitidine in patients with myelodysplastic syndromes. Am J Hematol 84:560–564

    Article  PubMed  CAS  Google Scholar 

  40. Uchida T, Ogawa Y, Kobayashi Y, Ishikawa T, Ohashi H, Hata T, Usui N, Taniwaki M, Ohnishi K, Akiyama H, Ozawa K, Ohyashiki K, Okamoto S, Tomita A, Nakao S, Tobinai K, Ogura M, Ando K, Hotta T (2011) Phase I and II study of azacitidine in Japanese patients with myelodysplastic syndromes. Cancer Sci 102:1680–1686

    Article  PubMed  CAS  Google Scholar 

  41. Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R (2005) FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10:176–182

    Article  PubMed  CAS  Google Scholar 

  42. Ziemba A, Hayes E, Freeman BB III, Ye T, Pizzorno G (2011) Development of an oral form of azacytidine: 2’3’5’triacetyl-5-azacytidine. Chemother Res Pract 2011:965826

    PubMed  Google Scholar 

  43. Garcia-Manero G, Stoltz ML, Ward MR, Kantarjian H, Sharma S (2008) A pilot pharmacokinetic study of oral azacitidine. Leukemia 22:1680–1684

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Manero G, Gore SD, Cogle C, Ward R, Shi T, Macbeth KJ, Laille E, Giordano H, Sakoian S, Jabbour E, Kantarjian H, Skikne B (2011) Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol 29:2521–2527

    Article  PubMed  CAS  Google Scholar 

  45. Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N, Krushel L, Aukerman SL, Heise C, MacBeth KJ (2010) A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 5:e9001

    Article  PubMed  Google Scholar 

  46. Pinto A, Attadia V, Fusco A, Ferrara F, Spada OA, Di Fiore PP (1984) 5-Aza-2′-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood 64:922–929

    PubMed  CAS  Google Scholar 

  47. Petti MC, Mandelli F, Zagonel V, De Gregoris C, Merola MC, Latagliata R, Gattei V, Fazi P, Monfardini S, Pinto A (1993) Pilot study of 5-aza-2′-deoxycytidine (Decitabine) in the treatment of poor prognosis acute myelogenous leukemia patients: preliminary results. Leukemia 7(Suppl 1):36–41

    PubMed  Google Scholar 

  48. Zagonel V, Lo Re G, Marotta G, Babare R, Sardeo G, Gattei V, De Angelis V, Monfardini S, Pinto A (1993) 5-Aza-2′-deoxycytidine (Decitabine) induces trilineage response in unfavourable myelodysplastic syndromes. Leukemia 7(Suppl 1):30–35

    PubMed  Google Scholar 

  49. Willemze R, Archimbaud E, Muus P (1993) Preliminary results with 5-aza-2′-deoxycytidine (DAC)-containing chemotherapy in patients with relapsed or refractory acute leukemia. The EORTC Leukemia Cooperative Group. Leukemia 7(Suppl 1):49–50

    PubMed  Google Scholar 

  50. Kantarjian HM, O’Brien SM, Estey E, Giralt S, Beran M, Rios MB, Keating M, de Vos D, Talpaz M (1997) Decitabine studies in chronic and acute myelogenous leukemia. Leukemia 11(Suppl 1):S35–S36

    PubMed  Google Scholar 

  51. Wijermans PW, Krulder JW, Huijgens PC, Neve P (1997) Continuous infusion of low-dose 5-Aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 11(Suppl 1):S19–S23

    PubMed  Google Scholar 

  52. Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M, Ferrant A (2000) Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18:956–962

    PubMed  CAS  Google Scholar 

  53. Lubbert M, Wijermans P, Kunzmann R, Verhoef G, Bosly A, Ravoet C, Andre M, Ferrant A (2001) Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br J Haematol 114:349–357

    Article  PubMed  CAS  Google Scholar 

  54. Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM (2004) Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103:1635–1640

    Article  PubMed  CAS  Google Scholar 

  55. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’Brien S, Cortes J, Faderl S, Bueso-Ramos C, Ravandi F, Estrov Z, Ferrajoli A, Wierda W, Shan J, Davis J, Giles F, Saba HI, Issa JP (2007) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109:52–57

    Article  PubMed  CAS  Google Scholar 

  56. Steensma DP, Baer MR, Slack JL, Buckstein R, Godley LA, Garcia-Manero G, Albitar M, Larsen JS, Arora S, Cullen MT, Kantarjian H (2009) Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol 27:3842–3848

    Article  PubMed  CAS  Google Scholar 

  57. Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H, Vukosavljevic T, Huynh L, Lozanski G, Kefauver C, Plass C, Devine SM, Heerema NA, Murgo A, Chan KK, Grever MR, Byrd JC, Marcucci G (2007) Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 25:3884–3891

    Article  PubMed  CAS  Google Scholar 

  58. Braun T, Itzykson R, Renneville A, de Renzis B, Dreyfus F, Laribi K, Bouabdallah K, Vey N, Toma A, Recher C, Royer B, Joly B, Vekhoff A, Lafon I, Sanhes L, Meurice G, Orear C, Preudhomme C, Gardin C, Ades L, Fontenay M, Fenaux P, Droin N, Solary E (2011) Groupe Francophone des Myelodysplasies: Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood 118:3824–3831

    Article  PubMed  CAS  Google Scholar 

  59. Wijermans PW, Ruter B, Baer MR, Slack JL, Saba HI, Lubbert M (2008) Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res 32:587–591

    Article  PubMed  CAS  Google Scholar 

  60. Costa R, Abdulhaq H, Haq B, Shadduck RK, Latsko J, Zenati M, Atem FD, Rossetti JM, Sahovic EA, Lister J (2011) Activity of azacitidine in chronic myelomonocytic leukemia. Cancer 117:2690–2696

    Article  PubMed  CAS  Google Scholar 

  61. Prebet T, Gore SD, Esterni B, Gardin C, Itzykson R, Thepot S, Dreyfus F, Rauzy OB, Recher C, Ades L, Quesnel B, Beach CL, Fenaux P, Vey N (2011) Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol 29:3322–3327

    Article  PubMed  CAS  Google Scholar 

  62. Jabbour E, Garcia-Manero G, Batty N, Shan J, O’Brien S, Cortes J, Ravandi F, Issa JP, Kantarjian H (2010) Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer 116:3830–3834

    Article  PubMed  CAS  Google Scholar 

  63. Talbert PB, Henikoff S (2010) Histone variants–ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    Article  PubMed  CAS  Google Scholar 

  64. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr (1998) Evans RM: Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814

    Article  PubMed  CAS  Google Scholar 

  65. Altucci L, Gronemeyer H (2001) The promise of retinoids to fight against cancer. Nat Rev Cancer 1:181–193

    Article  PubMed  CAS  Google Scholar 

  66. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18:7185–7191

    PubMed  CAS  Google Scholar 

  67. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. 95:3003–3007

    Google Scholar 

  68. Quintas-Cardama A, Santos FP, Garcia-Manero G (2011) Histone deacetylase inhibitors for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Leukemia 25:226–235

    Article  PubMed  CAS  Google Scholar 

  69. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  CAS  Google Scholar 

  70. Gore SD, Baylin S, Sugar E, Carraway H, Miller CB, Carducci M, Grever M, Galm O, Dauses T, Karp JE, Rudek MA, Zhao M, Smith BD, Manning J, Jiemjit A, Dover G, Mays A, Zwiebel J, Murgo A, Weng LJ, Herman JG (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66:6361–6369

    Article  PubMed  CAS  Google Scholar 

  71. Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi SH, Yang AS, Aucott T, Dauses T, Odchimar-Reissig R, Licht J, McConnell MJ, Nasrallah C, Kim MK, Zhang W, Sun Y, Murgo A, Espinoza-Delgado I, Oteiza K, Owoeye I, Silverman LR, Gore SD, Carraway HE (2009) Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114:2764–2773

    Article  PubMed  CAS  Google Scholar 

  72. Maslak P, Chanel S, Camacho LH, Soignet S, Pandolfi PP, Guernah I, Warrell R, Nimer S (2006) Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia 20:212–217

    Article  PubMed  CAS  Google Scholar 

  73. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, Rytting M, Wierda WG, Ravandi F, Koller C, Xiao L, Faderl S, Estrov Z, Cortes J, O’brien S, Estey E, Bueso-Ramos C, Fiorentino J, Jabbour E, Issa JP (2006) Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 108:3271–3279

    Article  PubMed  CAS  Google Scholar 

  74. Silverman LR, Verma A, Odchimar-Reissig R, LeBlanc A, Nejfeld V, Gabrilove JL (2008) A phase I trial of the epigenetic modulators vorinostat, in combination with azacitidine (azaC) in patients with the myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML): a study of the New York Cancer Consortium. Blood 112:3656

    Google Scholar 

  75. Garcia-Manero G, Estey E, Jabbour E, Kadia TM, Estrov Z, Cortes J (2010) Phase II study of 5-azacitidine and vorinostat in patients (pts) with newly diagnosed myelodysplastic syndrome (MDS) or acute myelogenous leukemia (AML) not eligible for clinicalt trials because poor performance of presence of other comorbidities. Blood 116:Abstr. 604

    Google Scholar 

  76. Garcia-Manero G, Yang AS, Giles F, Faderl S, Ravandi F, Cortes J, Newsome WJ, Issa JP, Patterson TA, Dubay M, Li Z, Kantarjian H, Martell RE (2007) Phase I/II study of MGCD0103, an oral isotype-selective histone deacetylase (HDAC) inhibitor, in combination with 5-Azacitidine in higher-risk myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). Blood 110

    Google Scholar 

  77. Grant S (2009) New agents for AML and MDS. Best Pract Res Clin Haematol 22:501–507

    Article  PubMed  CAS  Google Scholar 

  78. Carraway HE, Sidney Kimmel Comprehensive Cancer Center (2000–2012, Feb 11) A trial to evaluate two schedules of MS275 in combination with 5AC in elderly patients with acute myeloid leukemia (AML). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Available from: http://www.clinicaltrials.gov/ct2/show/NCT01305499:NCT01305499

  79. Scandura JM, Roboz GJ, Moh M, Morawa E, Brenet F, Bose JR, Villegas L, Gergis US, Mayer SA, Ippoliti CM, Curcio TJ, Ritchie EK, Feldman EJ (2011) Phase 1 study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML. Blood 118:1472–1480

    Article  PubMed  CAS  Google Scholar 

  80. De Padua SL, de Lima M, Kantarjian H, Faderl S, Kebriaei P, Giralt S, Davisson J, Garcia-Manero G, Champlin R, Issa JP, Ravandi F (2009) Feasibility of allo-SCT after hypomethylating therapy with decitabine for myelodysplastic syndrome. Bone Marrow Transplant 43:839–843

    Article  Google Scholar 

  81. Lubbert M, Bertz H, Ruter B, Marks R, Claus R, Wasch R, Finke J (2009) Non-intensive treatment with low-dose 5-aza-2′-deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients. Bone Marrow Transplant 44:585–588

    Article  PubMed  CAS  Google Scholar 

  82. Field T, Perkins J, Huang Y, Kharfan-Dabaja MA, Alsina M, Ayala E, Fernandez HF, Janssen W, Lancet J, Perez L, Sullivan D, List A, Anasetti C (2010) 5-Azacitidine for myelodysplasia before allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 45:255–260

    Article  PubMed  CAS  Google Scholar 

  83. Gerds AT, Gooley TA, Estey EH, Appelbaum FR, Deeg HJ, Scott BL (2012) Pre-transplant therapy with azacitidine vs induction chemotherapy and posttransplant outcome in patients with MDS. Biol Blood Marrow Transplant; in press. [Epub ahead of print]

    Google Scholar 

  84. Lubbert M, Bertz H, Wasch R, Marks R, Ruter B, Claus R, Finke J (2010) Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant 45:627–632

    Article  PubMed  CAS  Google Scholar 

  85. Czibere A, Bruns I, Kroger N, Platzbecker U, Lind J, Zohren F, Fenk R, Germing U, Schroder T, Graf T, Haas R, Kobbe G (2010) 5-Azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis. Bone Marrow Transplant 45:872–876

    Article  PubMed  CAS  Google Scholar 

  86. Bolanos-Meade J, Smith BD, Gore SD, McDevitt MA, Luznik L, Fuchs EJ, Jones RJ (2011) 5-Azacytidine as Salvage Treatment in Relapsed Myeloid Tumors After Allogeneic Bone Marrow Transplantation. Biol Blood Marrow Transplant 17:754–758

    Article  PubMed  CAS  Google Scholar 

  87. Loh Y (2000) Singapore General Hospital: Study of decitabine induction prior to allogeneic hematopoietic cell transplant in newly diagnosed MDS patients [cited 2012, Feb 11]. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). http://www.clinicaltrials.gov/ct2/show/NCT01333449:NCT01333449

  88. Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X, Berry D, Ahmed S, Zhu W, Pierce S, Kondo Y, Oki Y, Jelinek J, Saba H, Estey E, Issa JP (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28:605–613

    Article  PubMed  CAS  Google Scholar 

  89. Karpf AR, Lasek AW, Ririe TO, Hanks AN, Grossman D, Jones DA (2004) Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine. Mol Pharmacol 65:18–27

    Article  PubMed  CAS  Google Scholar 

  90. Link PA, Baer MR, James SR, Jones DA, Karpf AR (2008) p53-inducible ribonucleotide reductase (p53R2/RRM2B) is a DNA hypomethylation-independent decitabine gene target that correlates with clinical response in myelodysplastic syndrome/acute myelogenous leukemia. Cancer Res 68:9358–9366

    Article  PubMed  CAS  Google Scholar 

  91. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, Stevens-Linders E, van Hoogen P, van Kessel AG, Raymakers RA, Kamping EJ, Verhoef GE, Verburgh E, Hagemeijer A, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41:838–842

    Article  PubMed  CAS  Google Scholar 

  92. Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F, Viguié F, Quesnel B, Beyne-Rauzy O, Solary E, Vey N, Hunault-Berger M, Fenaux P, Mansat-De Mas V, Delabesse E, Guardiola P, Lacombe C, Vainchenker W, Preudhomme C, Dreyfus F, Bernard OA, Birnbaum D, Fontenay M, Groupe Francophone des Myélodysplasies (2009) TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 114:3285–3291

    Article  PubMed  CAS  Google Scholar 

  93. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O, Quesnel B, Vey N, Gelsi-Boyer V, Raynaud S, Preudhomme C, Adès L, Fenaux P, Fontenay M, Groupe Francophone des Myelodysplasies (GFM) (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25:1147–1152

    Article  PubMed  CAS  Google Scholar 

  94. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, Fulton R, Schmidt H, Kalicki-Veizer J, O’Laughlin M, Kandoth C, Baty J, Westervelt P, DiPersio JF, Mardis ER, Wilson RK, Ley TJ, Graubert TA (2011) Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25:1153–1158

    Article  PubMed  CAS  Google Scholar 

  95. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363:2424–2433

    Article  PubMed  CAS  Google Scholar 

  96. Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M, Yun H, Göhring G, Schlegelberger B, Hoelzer D, Lübbert M, Kanz L, Fiedler W, Kirchner H, Heil G, Krauter J, Ganser A, Heuser M (2011) Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 29:2889–2896

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Griffiths .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffiths, E.A., Gore, S.D. (2013). Epigenetic Therapies in MDS and AML. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_13

Download citation

Publish with us

Policies and ethics