Stereoscopic and Autostereoscopic Displays

  • Phil Surman


This chapter covers the state of the art in stereoscopic and autostereoscopic displays. The coverage is not exhaustive but is intended that in the relatively limited space available a reasonably comprehensive snapshot of the current state of the art can be provided. In order to give a background to this, a brief introduction to stereoscopic perception and a short history of stereoscopic displays is given. Holography is not covered in detail here as it is really a separate area of study and also is not likely to be the basis of a commercially viable display within the near future.


Autostereoscopic display Binocular parallax Crosstalk Depth cue Disparity Geometrical distortion Glasses Head-tracked display Image artifact Integral imaging Light field display Monocular cue Multi-view display Stereoscopic display Stereoscopic perception Viewing zone Volumetric display 


  1. 1.
    Spottiswoode N, Spottiswoode R (1953) The theory of stereoscopic transmission. University of California Press, p 13Google Scholar
  2. 2.
    Gibson EJ, Gibson JJ, Smith OW, Flock H (1959) Motion parallax as a determinant of perceived depth. J Exp Psychol 58(1):40–51Google Scholar
  3. 3.
    Julesz B (1960) Binocular depth perception of computer-generated patterns. Bell Syst Tech J 39:1125–1162Google Scholar
  4. 4.
    Scotcher SM, Laidlaw DA, Canning CR, Weal MJ, Harrad RA (1997) Pulfrich’s phenomenon in unilateral cataract. Br J Ophthalmol 81(12):1050–1055CrossRefGoogle Scholar
  5. 5.
    Wallach H, O’Connelu DN (1953) The kinetic depth effect. J Exp Psychol 45(4):205–217Google Scholar
  6. 6.
    Evans JPO (2003) Kinetic depth effect X-ray (KDEX) imaging for security screening visual information engineering. In: VIE 2003 international conference, 7–9 July 2003Google Scholar
  7. 7.
    Lambooij M, Ijsselsteijn W, Fortuin M, Heynderickx I (2009) Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Tech 53(3):030201Google Scholar
  8. 8.
    Hoffmann DM, Girshik AR, Akeley K, Banks MS (2008) Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3), Article 33Google Scholar
  9. 9.
    Woods A, Docherty T, Koch R (1993) Image distortions in stereoscopic video systems. In: Proceedings of the SPIE, stereoscopic displays and applications IV, vol 1915. San JoseGoogle Scholar
  10. 10.
    Pastoor S (1991) 3D-television: a survey of recent research results on subjective requirements signal processing image communication. Elsevier Science Publishers BV, Amsterdam, pp 21–32Google Scholar
  11. 11.
    McCarthy S (2010) Glossary for video & perceptual quality of stereoscopic video. White paper prepared by the 3D @Home Consortium and the MPEG Forum 3DTV working group. 17 Aug 2010. Accessed 24 Jan 2012
  12. 12.
    Kajiki Y (1997) Hologram-like video images by 45-view stereoscopic display. SPIE Proc Stereosc Disp Virtual Real Syst IV 3012:154–166Google Scholar
  13. 13.
    Lucente M, Benton SA, Hilaire P St (1994) Electronic holography: the newest. In: International symposium on 3D imaging and holography, OsakaGoogle Scholar
  14. 14.
    Hilaire P St (1995) Modulation transfer function of holographic stereograms. In: Proceedings of the SPIE, applications of optical holographyGoogle Scholar
  15. 15.
    Pastoor S (1992) Human factors of 3DTV: an overview of current research at Heinrich-Hertz-Institut Berlin. IEE colloquium on ‘stereoscopic television’: Digest No 1992/173:11/3Google Scholar
  16. 16.
    Lippmann G (1908) Epreuves reversibles. Photographies intégrales. Comptes-Rendus de l’Académie des Sciences 146(9):446–451Google Scholar
  17. 17.
    McCormick M, Davies N, Chowanietz EG (1992) Restricted parallax images for 3D TV. IEE colloquium on ‘stereoscopic television’: Digest No 1992/173:3/1–3/4Google Scholar
  18. 18.
    Arai J, Kawai H, Okano F (2006) Microlens arrays for integral imaging system. Appl Opt 45(36):9066–9078CrossRefGoogle Scholar
  19. 19.
    Kanolt CW (1918) US Patent 1260682Google Scholar
  20. 20.
    Brown D (2009) Images across space. Middlesex University Press, LondonGoogle Scholar
  21. 21.
    Baird JL (1945) Improvements in television. UK Patent 573,008. Applied for 26 Aug 1943 to 9 Feb 1944, Accepted 1 Nov 1945Google Scholar
  22. 22.
    Funk (2008) Stereoptiplexer cinema system—outside-looking in. Veritas et VisusGoogle Scholar
  23. 23.
    Bordwell D, Thompson K (2010) Film history: an introduction, 3rd edn. McGraw-Hill, New York. ISBN 978-0-07-338613-3Google Scholar
  24. 24.
    Collender R (1986) 3D television, movies and computer graphics without glasses. IEEE Trans Cons Electro CE-32(1):56–61CrossRefGoogle Scholar
  25. 25.
    Tilton HB (1987) The 3D oscilloscope—a practical manual and guide. Prentice Hall Inc., New JerseyGoogle Scholar
  26. 26.
    3D Display Technology Chart (2012) Accessed 24 Jan 2012
  27. 27.
    Woods AJ, Yuen KL, Karvinen KS (2007) Characterizing crosstalk in anaglyphic stereoscopic images on LCD monitors and plasma displays. J SID 15(11):889–898Google Scholar
  28. 28.
    Traub AC (1967) Stereoscopic display using rapid varifocal mirror oscillations. Appl Opt 6(6):1085–1087MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dolgoff G (1997) Real-depthTM imaging: a new imaging technology with inexpensive direct-view (no glasses) video and other applications. SPIE Proc Stereosc Disp Virtual Real Syst IV 3012:282–288Google Scholar
  30. 30.
    Sullivan A (2004) DepthCube solid-state 3D volumetric display. Proc SPIE 5291(1). ISSN:0277786X:279–284. doi: 10.1117/12.527543
  31. 31.
    Blundell BG, Schwartz AJ (2000) Volumetric three-dimensional display systems. Wiley-IEEE Press, New York. ISBN 0-471-23928-3Google Scholar
  32. 32.
    Okui M, Arai J, Okano F (2007) New integral imaging technique uses projector. doi: 10.1117/2.1200707.0620. Accessed 28 Jan 2012
  33. 33.
    Hitachi (2010) Hitachi shows 10” glasses-free 3D display. Article published in 3D-display-info website: Accessed 24 Jan 2012
  34. 34.
    Travis ARL, Lang SR (1991) The design and evaluation of a CRT-based autostereoscopic display. Proc SID 32/4:279–283Google Scholar
  35. 35.
    Dodgson N (2011) Multi-view autostereoscopic 3D display. Presentation given at the Stanford workshop on 3D imaging. 27 Jan 2011. Accessed 29 Jan 2012
  36. 36.
    Berkel C, Parker DW, Franklin AR (1996) Multview 3D-LCD. SPIE Proc Stereosc Disp Virtual Real Syst IV 2653:32–39Google Scholar
  37. 37.
    Schwartz A (1985) Head tracking stereoscopic display. In: Proceedings of IEEE international display research conference, pp 141–144Google Scholar
  38. 38.
    Woodgate GJ, Ezra D, Harrold J, Holliman NS, Jones GR, Moseley RR (1997) Observer tracking autostereoscopic 3D display systems. SPIE Proc Stereosc Disp Virtual Real Syst IV 3012:187–198Google Scholar
  39. 39.
    Benton SA, Slowe TE, Kropp AB, Smith SL (1999) Micropolarizer-based multiple-viewer autostereoscopic display. SPIE Proc Stereosc Disp Virtual Real Syst IV 3639:76–83Google Scholar
  40. 40.
    Ichinose S, Tetsutani N, Ishibashi M (1989) Full-color stereoscopic video pickup and display technique without special glasses. Proc SID 3014:319–323Google Scholar
  41. 41.
    Eichenlaub J (1994) An autostereoscopic display with high brightness and power efficiency. SPIE Proc Stereosc Disp Virtual Real Syst IV 2177:143–149Google Scholar
  42. 42.
    Sandlin DJ, Margolis T, Dawe G, Leigh J, DeFanti TA (2001) Varrier autostereographic display. SPIE Proc Stereosc Disp Virtual Real Syst IV 4297:204–211Google Scholar
  43. 43.
    Schwerdtner A, Heidrich H (1998) The dresden 3D display (D4D). SPIE Proc Stereosc Disp Appl IX 3295:203–210Google Scholar
  44. 44.
    Sorensen SEB, Hansen PS, Sorensen NL (2001) Method for recording and viewing stereoscopic images in color using multichrome filters. US Patent 6687003. Free patents online.
  45. 45.
    Jorke H, Fritz M (2012) Infitec—a new stereoscopic visualization tool by wavelength multiplexing. Accessed 25 Jan 2012
  46. 46.
    Lipton L (1988) Method and system employing a push–pull liquid crystal modulator. US Patent 4792850Google Scholar
  47. 47.
    Soneira RM (2012) 3D TV display technology shoot-out. Accessed 27 Jan 2012
  48. 48.
    Favalora GE (2009) Progress in volumetric three-dimensional displays and their applications. Opt Soc Am. Accessed 28 Jan 2012
  49. 49.
    Mora B, Maciejewski R, Chen M (2008) Visualization and computer graphics on isotropically emissive volumetric displays. IEEE Comput Soc. doi: 10.1109/TVCG.2008.99. Accessed 28 Jan 2012
  50. 50.
    Cossairt O, Napoli J, Hill SL, Dorval RK, Favalora GE (2007) Occlusion-capable multiview volumetric three-dimensional display. Appl Opt 46(8). Accessed 28 Jan 2012
  51. 51.
    Otsuka R, Hoshino T, Horry Y (2006) Transpost: 360 deg-viewable three-dimensional display system. Proc IEEE 94(3). doi: 10.1109/JPROC.2006.870700
  52. 52.
    Tanaka K, Aoki S (2006) A method for the real-time construction of a full parallax light field. In: Proceedings of SPIE, stereoscopic displays and virtual reality systems XIII 6055, 605516. doi: 10.1117/12.643597
  53. 53.
    Shimada S, Kimura T, Kakehata M. Sasaki F (2006) Three dimensional images in the air. Translation of the AIST press release of 7 Feb 2006. Accessed 28 Jan 2012
  54. 54.
    Jones A, McDowall I, Yamada H, Bolas M, Debevec P (2007) Rendering for an interactive 360º light field display. Siggraph 2007 Emerging Technologies. Accessed 28 Jan 2012
  55. 55.
    Jurik j, Jones A, Bolas M, Debevec P (2011) Prototyping a light field display involving direct observation of a video projector array. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW), pp 15–20Google Scholar
  56. 56.
    Baloch T (2001) Method and apparatus for displaying three-dimensional images. US Patent 6,201,565 B1Google Scholar
  57. 57. Accessed 28 Jan 2012
  58. 58.
  59. 59.
    Moller C, Travis A (2004) Flat panel time multiplexed autostereoscopic display using an optical wedge waveguide. In: Proceedings of 11th international display workshops, Niigata, pp 1443–1446Google Scholar
  60. 60.
    Okoshi T (1976) Three dimensional imaging techniques. Academic Press, New York, p 129Google Scholar
  61. 61.
    Hembd C, Stevens R, Hutley M (1997) Imaging properties of the gabor superlens. EOS topical meetings digest series: 13 microlens arrays. NPL Teddington, pp 101–104Google Scholar
  62. 62.
    Okoshi T (1976) Three dimensional imaging techniques. Academic Press, New York, p 140Google Scholar
  63. 63.
    Hitachi (2011) Stereoscopic display technology to display stereoscopic images superimposed on real space. News release 30 Sept 2011. Accessed 29 Jan 2012
  64. 64.
    IJzerman W et al (2005) Design of 2D/3D switchable displays. Proc SID 36(1):98–101CrossRefGoogle Scholar
  65. 65.
    Dimenco (2012) Products—displays 3D stopping power—52″ proffesional 3D display. Accessed 29 Jan 2012
  66. 66.
    Boev A, Raunio K, Gotchev A, Egiazarian K (2008) GPU-based algorithms for optimized visualization and crosstalk mitigation on a multiview display. In: Proceedings of SPIE-IS&T electronic imaging. SPIE, vol 6803, pp 2–4. Accessed 29 Jan 2012
  67. 67.
    Masterimage (2012) Autostereoscopic 3D LCD. Accessed 29 Jan 2012
  68. 68.
    Schmidt A, Grasnick (2002) Multi-viewpoint autostereoscopic displays from 4D-vision. In: Proceedings of SPIE photonics west 2002: electronic imaging, vol 4660, pp 212–221Google Scholar
  69. 69.
    Inition (2012) Accessed 29 Jan 2012
  70. 70.
    Surman P, Hopf K, Sexton I, Lee WK, Bates R (2008) Solving the problem—the history and development of viable domestic 3DTV displays. In: Three-dimensional television, capture, transmission, display (edited book). Springer Signals and Communication TechnologyGoogle Scholar
  71. 71.
    Haussler R, Schwerdtner A, Leister N (2008) Large holographic displays as an alternative to stereoscopic displays. In: Proceedings of SPIE, stereoscopic displays and applications XIX, vol 6803(1)Google Scholar
  72. 72.
    Travis A, Emerton N, Large T, Bathiche S, Rihn B (2010) Backlight for view-sequential autostereo 3D. SID 2010 Digest, pp 215–217Google Scholar
  73. 73.
    Microsoft (2010) The wedge—seeing smart displays through a new lens. Accessed 4 Feb 2012
  74. 74.
    Krah C (2010) Three-dimensional display system. US Patent 7,843,449. www.freepatentsonline/7843339.pdf. Accessed 4 Feb 2012
  75. 75.
    Purcher J (2011) Apple wins a surprise 3D display and imaging patent stunner.
  76. 76.
    Surman P, Sexton I, Hopf K, Lee WK, Neumann F, Buckley E, Jones G, Corbett A, Bates R, Talukdar S (2008) Laser-based multi-user 3D display. J SID 16(7):743–753Google Scholar
  77. 77.
    Erden E, Kishore VC, Urey H, Baghsiahi H, Willman E, Day SE, Selviah DR, Fernandez FA, Surman P (2009) Laser scanning based autostereoscopic 3D display with pupil tracking. Proc IEEE Photonics 2009:10–11Google Scholar
  78. 78.
    Ng R, Levoy M, Bredif M, Duval G, Horowitz M, Hanrahan P (2005) Light field photography with a hand-held plenoptic camera. Stanford Tech Report CTSR 2005-02. Accessed 6 Feb 2012
  79. 79.
    Chinnock C (2011) Here comes the second wave of 3D. Display Daily. Accessed 6 Feb 2012
  80. 80.
    Blanche P-A et al (2010) Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468(7320):80–83. Accessed 6 Feb 2012Google Scholar
  81. 81.
    Barabas J, Jolly S, Smalley DE, Bove VM (2011) Diffraction specific coherent panoramagrams of real scenes. Proceedings of SPIE Practice Hologram XXV, vol 7957Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Imaging and Displays Research GroupDe Montfort UniversityLeicesterUK

Personalised recommendations