Transmission of 3D Video over Broadcasting

  • Pablo Angueira
  • David de la Vega
  • Javier Morgade
  • Manuel María Vélez
Chapter

Abstract

This chapter provides a general perspective of the feasibility options of the digital broadcasting networks for delivering three-dimensional TV (3D-TV) services. It discusses factors (e.g., data format) that need to be accounted for in the deployment stages of 3D-TV services over broadcast networks with special emphasis made on systems based on Depth-Image-Based Rendering (DIBR) techniques.

Keywords

3D broadcasting 3D-TV system 3D video coding Cable Digital broadcast DVB Frame compatible 3D format H.264/AVC ITU-R ISDB MPEG-2 Multi-view video coding (MVC) Multi-view video plus depth (MVD) Network requirement Satellite Scalable Video Coding (SVC) Standardization Terrestrial Transport 

References

  1. 1.
    International Telecommunications Union. Radiocommunications Sector (2010) Report ITU-R. BT.2160 features of three-dimensional television video systems for broadcastingGoogle Scholar
  2. 2.
    International Organization for Standardization (2007) ISO/IEC 23002–3:2007—Information technology—MPEG video technologies—Part 3: Representation of auxiliary video and supplemental informationGoogle Scholar
  3. 3.
    International Organization for Standardization (2011) Call for proposals on 3D video coding technology, ISO/IEC JTC1/SC29/WG11 MPEG2011/N12036Google Scholar
  4. 4.
    Society of Motion Picture and Television Engineers (2009) Report of SMPTE Task Force on 3D to the HomeGoogle Scholar
  5. 5.
    Digital Video Broadcasting (2010) DVB BlueBook A151 Commercial requirements for DVB-3DTVGoogle Scholar
  6. 6.
    Digital Video Broadcasting (2011) DVB Frame compatible plano-stereoscopic 3DTV (DVB-3DTV), DVB BlueBook A154Google Scholar
  7. 7.
    European Telecommunications Standard Institute (2011) ETSI EN 302 755 V1.2.1. Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2)Google Scholar
  8. 8.
    European Telecommunications Standard Institute (2011) ETSI EN 302 769 V1.2.1 Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2)Google Scholar
  9. 9.
    European Telecommunications Standard Institute (2009) ETSI EN 302 307 V1.2.1. Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applicationsGoogle Scholar
  10. 10.
    Müller K et al (2009) Coding and intermediate view synthesis of multiview video plus depth. In: 16th IEEE International conference on image processing (ICIP), pp 741–744Google Scholar
  11. 11.
    Li Sisi et al (2010) The overview of 2D to 3D conversion system. In: IEEE 11th International conference on computer-aided industrial design and conceptual design (CAIDCD), vol 2, pp 1388–1392Google Scholar
  12. 12.
    International Organization for Standardization (2009) ISO/IEC JTC1/SC29/WG11 N10540: Text of ISO/IEC 14496–10:2009 FDAM 1(including stereo high profile)Google Scholar
  13. 13.
    Fehn C (2004) 3D-TV using depth-image-based rendering (DIBR). In: Proceedings of picture coding symposiumGoogle Scholar
  14. 14.
    Zhang L, Tam WJ (2005) Stereoscopic image generation based on depth images for 3DTV3D-TV. IEEE Trans Broadcast 51(2):191–199CrossRefGoogle Scholar
  15. 15.
    Merkle P et al (2007) Multi-View Video Plus Depth Representations and Coding Technologies. IEEE Conference on Image Processing, pp 201–204Google Scholar
  16. 16.
    Bartczak B et al (2011) Display-independent 3D-TV production and delivery using the layered depth video format. IEEE Trans Broadcast 57(2):477–490CrossRefGoogle Scholar
  17. 17.
    European Telecommunications Standard Institute (2009) ETSI TS 102 034 V1.4.1. Transport of MPEG-2 TS based DVB services over IP based networks (and associated XML)Google Scholar
  18. 18.
    Internet Engineering Task Force (IETF) (2011) RTP Payload format for H.264 video, RFC 6184, proposed standardGoogle Scholar
  19. 19.
    International Organization for Standardization (2010) ISO/IEC 14496-10:2010. Information technology—coding of audio-visual objects—Part 10: advanced video codingGoogle Scholar
  20. 20.
    Vetro A et al (2011) Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proc IEEE 99(4):626–642CrossRefGoogle Scholar
  21. 21.
    Smolic A et al (2009) Development of a new MPEG standard for advanced 3D video applications. In: Proceedings of 6th international symposium on image and signal processing and analysis, pp 400–407Google Scholar
  22. 22.
    Merkle P et al (2008) Adaptation and optimization of coding algorithms for mobile 3DTV. MOBILE 3DTV, Technical report D2.2Google Scholar
  23. 23.
    International Organization for Standardization (2007) Text of ISO/IEC 13818-1:2003/FPDAM2 Carriage of auxiliary video data streams and supplemental information, Doc No. 8799Google Scholar
  24. 24.
    Bourge A et al (2006) MPEG-C Part 3: Enabling the introduction of video plus depth contents. In: Proceeding workshop content generation coding 3D-TelevisionGoogle Scholar
  25. 25.
    Sukhee C et al (2005) Disparity-compensated stereoscopic video coding using the MAC in MPEG-4. ETRI J 27(3):326–329CrossRefGoogle Scholar
  26. 26.
    Hewage CTER et al (2007) Comparison of stereo video coding support in MPEG-4 MAC, H.264/AVC and H.264/SVC. In: 4th IET international conference on visual information engineeringGoogle Scholar
  27. 27.
    Hur N (2010) 3D DMB: A portable/mobile 3D-TV system. 3D-TV workshop, ShanghaiGoogle Scholar
  28. 28.
    Hoffmann H et al (2006) Studies on the bit rate requirements for a HDTV format With 1920 1,080 pixel resolution, progressive scanning at 50 Hz frame rate targeting large flat panel displays. IEEE Trans Broadcast 52(4) CrossRefGoogle Scholar
  29. 29.
    Hoffmann H et al (2008) A novel method for subjective picture quality assessment and further studies of HDTV formats. IEEE Trans Broadcast 54(1)CrossRefGoogle Scholar
  30. 30.
    European Broadcasting Union (2006) Digital terrestrial HDTV broadcasting in Europe. EBU Tech 3312Google Scholar
  31. 31.
    Klein K et al (2007) Advice on spectrum usage, HDTV and MPEG-4. http://www.bbc.co.uk/bbctrust/assets/files/pdf/consult/hdtv/sagentia.pdf
  32. 32.
    Brugger R et al (2009) Spectrum usage and requirements for future terrestrial broadcast applications. EBU technical reviewGoogle Scholar
  33. 33.
    McCann K et al (2009) Beyond HDTV: implications for digital delivery. An independent report by Zeta cast Ltd commissioned by ofcomGoogle Scholar
  34. 34.
    Husak W (2009) Issues in broadcast delivery of 3D. EBU 3D TV workshopGoogle Scholar
  35. 35.
    Tagiri S et al (2006) ISDB-C: cable television transmission for digital broadcasting in Japan. Proc IEEE 94(1):303–311CrossRefGoogle Scholar
  36. 36.
    Robert J et al (2009) DVB-C2—The standard for next generation digital cable transmission. In: IEEE international symposium on broadband multimedia systems and broadcasting, BMSBGoogle Scholar
  37. 37.
    Benzie P et al (2007) A survey of 3DTV displays: techniques and technologies. IEEE Trans Circuits Syst Video Technol 17(11): CrossRefGoogle Scholar
  38. 38.
    Onural L et al (2006) An assessment of 3DTV technologies. NAB BEC proceedings, pp 456–467Google Scholar
  39. 39.
    Surman P et al (2008) Chapter 13: Development of viable domestic 3DTV displays. In: Ozaktas HM, Onural L (eds) Three-dimensional television, capture, transmission, display. Springer, BerlinGoogle Scholar
  40. 40.
    Onural L, Ozaktas HM (2008) Chapter 1: Three-dimensional television: from science-fiction to reality. In: Ozaktas HM, Onural L (eds) Three-dimensional television, capture, transmission, display. Springer, BerlinGoogle Scholar
  41. 41.
    Gvili R et al (2003) Depth keying. Proc SPIE-IS&T Electron Imaging 50(6):564–574CrossRefGoogle Scholar
  42. 42.
    Pastoor S (1991) 3D Television: a survey of recent research results on subjective requirements. Signal Process, Image Commun 4(1):21–32CrossRefGoogle Scholar
  43. 43.
    Sung-Fang Tsai et al (2011) A real-time 1080p 2D-to-3D video conversion system. In: IEEE International conference on consumer electronics (ICCE) Proceedings 803–804Google Scholar
  44. 44.
    Zhang Liang (2011) 3D-TV content creation: automatic 2D-to-3D video conversion. IEEE Trans Broadcast 57(2):372–383CrossRefGoogle Scholar
  45. 45.
    European Telecommunications Standards Institute (1997) Framing structure, channel coding and modulation for 11/12 GHz satellite services. EN 300 421 V1.1.2Google Scholar
  46. 46.
    European Telecommunications Standards Institute (1997) Implementation of binary phase shift keying (BPSK) modulation in DVB satellite transmission systems. TR 101 198 V1.1.1Google Scholar
  47. 47.
    International Telecommunications Union. Radiocommunications Sector (2007) Recommendation BO.1784. Digital satellite broadcasting system with flexible configuration (television, sound and data)Google Scholar
  48. 48.
    European Telecommunications Standards Institute (2005) User guidelines for the second generation system for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications. TR 102 376 V1.1.1Google Scholar
  49. 49.
    European Telecommunications Standards Institute (2005) ETSI. TS 102 441 V1.1.1 DVB-S2 Adaptive coding and modulation for broadband hybrid satellite dialup applicationsGoogle Scholar
  50. 50.
    European Telecommunications Standard Institute (1997) ETSI EN 300 744 Framing structure, channel coding and modulation for digital terrestrial televisionGoogle Scholar
  51. 51.
    Reimers U (2006) The family of international standards for digital video broadcasting. Proc IEEE 94(1):173–182CrossRefGoogle Scholar
  52. 52.
    European Telecommunications Standards Institute (2010) ETSI. TS 102 831 V1.1.1 DVB- Implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2)Google Scholar
  53. 53.
    Morgade J et al (2011) 3DTV Roll-Out scenarios: a DVB-T2 approach. IEEE Trans Broadcast 57(2):582–592CrossRefGoogle Scholar
  54. 54.
    Advanced Television Systems Committee (2007) ATSC digital television standard A/53DGoogle Scholar
  55. 55.
    Advanced Television Systems Committee (2003) Guide to the use of the digital television standard, ATSC A/54AGoogle Scholar
  56. 56.
    International Telecommunication Union. Radiocommunications Sector (2005) Rec. ITU-R BT.1300-3. Service multiplex, transport, and identification methods for digital terrestrial television broadcastingGoogle Scholar
  57. 57.
    International Telecommunication Union. Radiocommunications Sector (2011) Rec. ITU-R BT.1306. Error correction, data framing, modulation and emission methods for digital terrestrial television broadcastingGoogle Scholar
  58. 58.
    International Organization for Standardization (2005) ISO/IEC 13818-2. Information technology—generic coding of moving pictures and associated audio: videoGoogle Scholar
  59. 59.
    Advanced Television Systems Committee (2001) Digital audio compression (AC-3) standard, ATSC: A/52BGoogle Scholar
  60. 60.
    International Telecommunications Union. Telecommunications Sector (2003) Rec. ITU-T H.264 | ISO/IEC 14496-10 AVC. Advanced video coding for generic audiovisual servicesGoogle Scholar
  61. 61.
    Richer MS et al (2006) The ATSC digital television system. Proc IEEE 94:37–42CrossRefGoogle Scholar
  62. 62.
    Bretl W et al (2006) ATSC RF, modulation and transmission. Proc IEEE 94:44–59CrossRefGoogle Scholar
  63. 63.
    International Organization for Standardization (2005) Information technology—Generic coding of moving pictures and associated audio—Part 1: Systems. ISO/IEC 13818-1Google Scholar
  64. 64.
    Lechner BJ et al (2006) The ATSC transport layer, including program and system information protocol (PSIP). Proc IEEE 94:77–101CrossRefGoogle Scholar
  65. 65.
    Hur N et al (2011) 3DTV broadcasting and distribution systems. IEEE Trans Broadcast 57(2):395–407CrossRefGoogle Scholar
  66. 66.
    Park S et al (2010) A new method of terrestrial 3DTV broadcasting system. IEEE broadcast symposiumGoogle Scholar
  67. 67.
    Advanced Television Systems Committee (2011) ATSC planning team interim report. Part2: 3D technologyGoogle Scholar
  68. 68.
    Association of Radio Industries and Businesses (2005) Transmission system for digital terrestrial television broadcasting, ARIB Standard STD-B31Google Scholar
  69. 69.
    Association of Radio Industries and Businesses (2006) Operational guidelines for digital terrestrial television broadcasting, ARIB Tech. Rep. TR-B14Google Scholar
  70. 70.
    Association of Radio Industries and Businesses (2007) Video coding, audio coding and multiplexing specifications for digital broadcasting, ARIB standard STD-B32Google Scholar
  71. 71.
    Association of Radio Industries and Businesses (2008) Data coding and transmission specification for digital broadcasting, ARIB standard STD-B24Google Scholar
  72. 72.
    Asami H, Sasaki M (2006) Outline of ISDB systems. Proc IEEE 94:248–250CrossRefGoogle Scholar
  73. 73.
    Uehara M (2006) Application of MPEG-2 systems to terrestrial ISDB (ISDB-T). Proc IEEE 94:261–268CrossRefGoogle Scholar
  74. 74.
    Takada M, Saito M (2006) Transmission system for ISDB-T. Proc IEEE 94:251–256CrossRefGoogle Scholar
  75. 75.
    Itoh N, Tsuchida K (2006) HDTV mobile reception in automobiles. Proc IEEE 94:274–280CrossRefGoogle Scholar
  76. 76.
    Standardization Administration of the People’s Republic of China (2006) Frame structure, channel coding and modulation for a digital television terrestrial broadcasting system, chinese national standard. GB 20600Google Scholar
  77. 77.
    Wu J et al (2007) Robust timing and frequency synchronization scheme for DTMB system. IEEE Trans Consum Electron 53(4):1348–1352CrossRefGoogle Scholar
  78. 78.
    Zhang W et al (2007) An introduction of the Chinese DTTB standard and analysis of the PN595 working modes. IEEE Trans Broadcasting 53(1):8–13CrossRefGoogle Scholar
  79. 79.
    Song J et al (2007) Technical review on chinese digital terrestrial television broadcasting standard and measurements on some working modes. IEEE Trans Broadcasting 53(1):1–7CrossRefGoogle Scholar
  80. 80.
    OFTA (2009) Technical specifications for digital terrestrial television baseline receiver requirementsGoogle Scholar
  81. 81.
    Ong C (2009) White paper on latest development of digital terrestrial multimedia broadcasting (DTMB) technologies. Hong Kong Applied Science and Technology Research Institute (ASTRI), Hong KongGoogle Scholar
  82. 82.
    European Telecommunications Standards Institute (2009) ETSI TR 102 377 v1.3.1 digital video broadcasting (DVB): DVB-H implementation guidelinesGoogle Scholar
  83. 83.
    European Telecommunications Standards Institute (2004) ETSI EN 302 304 v1.1.1 Digital video broadcasting (DVB); transmission system for handheld terminals (DVB-H)Google Scholar
  84. 84.
    Faria G et al (2006) DVB-H: digital broadcast services to handheld devices. Proc IEEE 94(1):194–209CrossRefGoogle Scholar
  85. 85.
    Atanas G et al (2010) Complete end-to-end 3DTV system over DVB-H. Mobile3DTV projectGoogle Scholar
  86. 86.
    Atanas G et al (2011) Mobile 3DTV content delivery optimization over DVB-H system. Final public summary. Mobile3DTV projectGoogle Scholar
  87. 87.
    European Telecommunications Standards Institute (2006) ETSI EV 300401 v1.4.1, radio broadcasting systems, digital audio broadcasting (DAB) to mobile, portable and fixed receiversGoogle Scholar
  88. 88.
    Telecommunications Technology Association (2005) TTASKO-07.0024 radio broadcasting systems, Specification of the video services for VHF digital multimedia broadcasting (DMB) to mobile, portable and fixed receiversGoogle Scholar
  89. 89.
    International Organization for Standardization (2008) ISO/IEC JTC1/SC29/WG11 joint draft 7.0 on multiview video codingGoogle Scholar
  90. 90.
    Baroncini V, Sullivan GJ and Ohm JR (2010) Report of subjective testing of responses to joint call for proposals on video coding technology for high efficiency video coding (HEVC). Document JCTVC-A204 of JCT-VCGoogle Scholar
  91. 91.
    Yun K et al (2008) Development of 3D video and data services for T-DMB. SPIE Stereoscopic Disp Appl XIX 6803:28–30Google Scholar
  92. 92.
    International Organization for Standardization (2010) ISO/IEC. JTC1/SC29/WG11 a frame compatible system for 3D delivery. Doc. M17925Google Scholar
  93. 93.
    Lee H et al (2008) A backward-compatible, mobile, personalized 3DTV broadcasting system based on T-DMB. Three-dimensional television capture, transmission, display. Springer, New YorkGoogle Scholar
  94. 94.
    Park YK et al (2009) Depth-image-based rendering for 3DTV service over T-DMB. Signal Process: Image Commun 24:122–136 (Elsevier)Google Scholar
  95. 95.
    Kauff P et al (2007) Depth map creation and image-based rendering for advanced 3DTV services providing interoperability and scalability. Signal Process: Image Commun 22(2):217–234. (Elsevier)Google Scholar
  96. 96.
    European Telecommunications Standards Institute (1998) EN 300 429 V1.2.1. Framing structure, channel coding and modulation for cable systemsGoogle Scholar
  97. 97.
    European Telecommunications Standards Institute (2011) TS 102 991 v1.2.1. DVB-C2 implementation guidelinesGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pablo Angueira
    • 1
  • David de la Vega
    • 1
  • Javier Morgade
    • 1
  • Manuel María Vélez
    • 1
  1. 1.Department of Electronics and TelecommunicationsBilbao Faculty of Engineering, University of the Basque Country (UPV/EHU)BilbaoSpain

Personalised recommendations