An Overview of 3D-TV System Using Depth-Image-Based Rendering



The depth-based 3D system is considered a strong candidate of the second-generation 3D-TV, preceded by the stereoscopic 3D-TV. The data formats involve one or several pairs of coupled texture images and depth maps, often known as image-plus-depth (2D + Z), multi-view video plus depth (MVD), and layered depth video (LDV). With the depth information, novel views at arbitrary viewpoints can be synthesized with a depth-image-based rendering (DIBR) technique. In such a way, the depth-based 3D-TV system can provide stereoscopic pairs with an adjustable baseline or multiple views for autostereoscopic displays. This chapter overviews key technologies involved in this depth-based 3D-TV system, including content generation, data compression and transmission, 3D visualization, and quality evaluation. We will also present some challenges that hamper the commercialization of the depth-based 3D video broadcast. Finally, some international research cooperation and standardization efforts are briefly discussed as well.


3D video coding 3D visualization Challenge Content generation Depth-based 3D-TV Depth camera Depth map Depth perception Depth-image-based rendering (DIBR) Layered depth video (LDV) Multi-view video plus depth (MVD) Perceptual issue Quality evaluation Standardization Stereoscopic display 3D video transmission View synthesis 



The authors thank Philips and Microsoft for kindly providing the “Mobile” and “Ballet” sequences. They are also grateful to Dr. Vincent Jantet for preparing the LDI images in Fig. 1.4. This work is partially supported by the National Basic Research Program of China (973) under Grant No.2009CB320903 and Singapore Ministry of Education Academic Research Fund Tier 1 (AcRF Tier 1 RG7/09).


  1. 1.
  2. 2.
    Ito T (2010) Future television—super hi-vision and beyond. In: Proceedings of IEEE Asian solid-state circuits conference, Nov 2010, Beijing, China, pp 1–4Google Scholar
  3. 3.
    Kubota A, Smolic A, Magnor M, Tanimoto M, Chen T, Zhang C (2007) Multiview imaging and 3DTV. IEEE Signal Process Mag 24(6):10–21CrossRefGoogle Scholar
  4. 4.
    Onural L (2010) Signal processing and 3DTV. IEEE Signal Process Mag 27(5):142–144CrossRefGoogle Scholar
  5. 5.
    Tanimoto M, Tehrani MP, Fujii T, Yendo T (2011) Free-viewpoint TV. IEEE Signal Process Mag 28(1):67–76CrossRefGoogle Scholar
  6. 6.
    Konrad J, Halle M (2007) 3-D displays and signal processing. IEEE Signal Process Mag 24(7):97–111Google Scholar
  7. 7.
    Benzie P, Watson J, Surman P, Rakkolainen I, Hopf K, Urey H, Sainov V, von Kopylow C (2007) A survey of 3DTV displays: techniques and technologies. IEEE Trans Circuits Syst Video Technol 17(11):1647–1658CrossRefGoogle Scholar
  8. 8.
    Holliman NS, Dodgson NA, Favalora GE, Pockett L (2011) Three-dimensional displays: a review and applications analysis. IEEE Trans Broadcast 57(2):362–371CrossRefGoogle Scholar
  9. 9.
    Urey H, Chellappan KV, Erden E, Surman P (2011) State of the art in stereoscopic and autostereoscopic displays. Proc IEEE 99(4):540–555CrossRefGoogle Scholar
  10. 10.
    Cho M, Daneshpanah M, Moon I, Javidi B (2011) Three-dimensional optical sensing and visualization using integral imaging. Proc IEEE 99(4):556–575CrossRefGoogle Scholar
  11. 11.
    Onural L, Yaraz F, Kang H (2011) Digital holographic three-dimensional video displays. Proc IEEE 99(4):576–589CrossRefGoogle Scholar
  12. 12.
    Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 8(8):37–44CrossRefGoogle Scholar
  13. 13.
    Chen T, Kashiwagi Y (2010) Subjective picture quality evaluation of MVC stereo high profile for full-resolution stereoscopic high-definition 3D video applications. In: Proceedings of IASTED conference signal image processing, Maui, HI, Aug 2010Google Scholar
  14. 14.
    World Cup 2010 in 3D TV Available:
  15. 15.
    Müller K, Merkle P, Wiegand T (2011) 3-D video representation using depth mapdepth maps. Proc IEEE 99(4):643–656CrossRefGoogle Scholar
  16. 16.
    Smolic A, Kauff P, Knorr S, Hornung A, Kunter M, Müller M, Lang M (2011) Three-dimensional video postproduction and processing. Proc IEEE 99(4):607–625CrossRefGoogle Scholar
  17. 17.
    Vetro A, Tourapis AM, Müller K, Chen T (2011) 3D-TV content storage and transmission. IEEE Trans Broadcast 57(2):384–394CrossRefGoogle Scholar
  18. 18.
    Fehn C (2003) A 3D-TV approach using depth-image-based rendering (DIBR). In: Proceedings of visualization, imaging and image processing (VIIP), pp 482–487Google Scholar
  19. 19.
    Fehn C (2004) Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In: Proceedings of stereoscopic displays virtual reality systems XI, San Jose, CA, USA, Jan 2004, pp 93–104Google Scholar
  20. 20.
    Merkle P, Smolic A, Müller K, Wiegand T (2007) Multi-view video plus depth representation and coding. In: Proceedings of international conference on image processing, pp I-201-I-204Google Scholar
  21. 21.
    Shade J, Gortler S, He L, Szeliski R (1998) Layered depth images. In: Proceedings of the 25th annual conference on computer graphics and interactive techniques, New York, NY, USA, pp 231–242Google Scholar
  22. 22.
    Jot JM, Larcher V, Pernaux JM (1999) A comparative study of 3-D audio encoding and rendering techniques. In: Proceedings of 16th AES international conference, Mar 1999Google Scholar
  23. 23.
    Poletti M (2005) Three-dimensional surround sound systems based on spherical harmonics. J Audio Eng Soc 53(11):1004–1025Google Scholar
  24. 24.
    Fazi F, Nelson P, Potthast R (2009) Analogies and differences between three methods for soundfield reproduction. In: Proceedings of ambisonics symposium, Graz, Austria, June 2009Google Scholar
  25. 25.
    Okamoto T, Cui ZL, Iwaya Y, Suzuki Y (2010) Implementation of a high-definition 3D audio-visual display based on higher order ambisonics using a 157-loudspeaker array combined with a 3D projection display. In: Proceedings of international conference on network infrastructure and digital content (IC-NIDC), pp 179–183Google Scholar
  26. 26.
    André C, Embrechts JJ, Verly JG (2010) Adding 3D sound to 3D cinema: identification and evaluation of different reproduction techniques. In: Proceedings of international conference on audio, language and image processing, Nov 2010, Shanghai, China, pp 130–137Google Scholar
  27. 27.
    Strohmeier D, Jumisko-Pyykkö S (2008) How does my 3D video sound like?—impact of loudspeaker set-ups on audiovisual quality on mid-sized autostereoscopic display. In: Proceedings of 3DTV conference, pp 73–76Google Scholar
  28. 28.
    Narayanan PJ, Rander P, Kanade T (1995) Synchronous capture of image sequences from multiple cameras. Technical report CMU-RI-TR-95-25, Robotics Institute, Carnegie Mellon University, Dec 1995Google Scholar
  29. 29.
    Wilburn B, Joshi N, Vaish V, Talvala E-V, Antunez E, Barth A, Adams A, Levoy M, Horowitz M (2005) High performance imaging using large camera arrays. In: Proceedings of ACM SIGGRAPH, Los Angeles, CA, USAGoogle Scholar
  30. 30.
    Smolic A (2011) 3D video and free viewpoint video—from capture to display. Pattern Recognit 44(9):1958–1968MathSciNetCrossRefGoogle Scholar
  31. 31.
    Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell T (2007) A survey of general-purpose computation on graphics hardware. Comput Graph Forum 26(1):80–113CrossRefGoogle Scholar
  32. 32.
    Whitted T (1980) An improved illumination model for shaded display. Commun ACM 23(6):343–349CrossRefGoogle Scholar
  33. 33.
    Kanade T, Okutomi M (1994) A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans Pattern Anal Mach Intell 16(9):920–932CrossRefGoogle Scholar
  34. 34.
    Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 47(1–3):7–42MATHCrossRefGoogle Scholar
  35. 35.
    Sun J, Zheng N, Shum H (2003) Stereo matching using belief propagation. IEEE Trans Pattern Anal Mach Intell 25(7):787–800CrossRefGoogle Scholar
  36. 36.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137CrossRefGoogle Scholar
  37. 37.
    Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 2(60):91–110CrossRefGoogle Scholar
  38. 38.
    Lange R, Seitz P (2001) Solid-state time-of-flight range camera. IEEE J Quantum Electron 37(3):390–397CrossRefGoogle Scholar
  39. 39.
    Scharstein D, Szeliski R (2003) High-accuracy stereo depth maps using structured light. In: Proceedings of computer vision and pattern recognition, pp 195–202Google Scholar
  40. 40.
    Yang Q, Yang R, Davis J, Nistér D (2007) Spatial-depth super resolution for range images. In: Proceedings of international conference computer vision and pattern recognition, pp 1–8Google Scholar
  41. 41.
    Zhu J, Wang L, Yang R, Davis J (2008) Fusion of time-of-flight depth and stereo for high accuracy depth maps. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 231–236, June 2008Google Scholar
  42. 42.
    Schiller I, Beder C, Koch R (2008) Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup. In: Proceedings of the society of photogrammetry and remote sensing, pp 297–302Google Scholar
  43. 43.
    Bartczak B, Koch R (2009) Dense depth maps from low resolution time-of-flight depth and high resolution color views. In: Proceedings of international symposium on advanced visual computing, pp 228–239Google Scholar
  44. 44.
    Harman P, Flack J, Fox S, Dowley M (2002) Rapid 2D to 3D conversion. In: Proceedings of SPIE, vol 4660. pp 78–86Google Scholar
  45. 45.
    Tam WJ, Zhang L (2006) 3D-TV content generation: 2D-to-3D conversion. In: Proceedings of IEEE international conference on multimedia and expo (ICME), Toronto, CanadaGoogle Scholar
  46. 46.
    Zhang L, Vazquez C, Knorr S (2011) 3D-TV content creation: automatic 2D-to-3D video conversion. IEEE Trans Broadcast 57(2):372–383CrossRefGoogle Scholar
  47. 47.
    Battiato S, Curti S, La Cascia M (2004) Depth map generation by image classification. In: Proceedings of SPIE, vol 5302. pp 95–104Google Scholar
  48. 48.
    Ens J, Lawrence P (1993) An investigation of methods for determining depth from focus. IEEE Trans Pattern Anal Mach Intell 15(2):97–108CrossRefGoogle Scholar
  49. 49.
    Moustakas K, Tzovaras D, Strintzis MG (2005) Stereoscopic video generation based on efficient layered structure and motion estimation from a monoscopic image sequence. IEEE Trans Circuits Syst Video Technol 15(8):1065–1073CrossRefGoogle Scholar
  50. 50.
    Feng Y, Ren J, Jiang J (2011) Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications. IEEE Trans Broadcast 57(2):500–509CrossRefGoogle Scholar
  51. 51.
    Cheng X, Sun L, Yang S (2007) Generation of layered depth images from multi-view video. In: Proceedings of IEEE international conference on image processing (ICIP’07), San Antonio, TX, USA, vol 5. pp 225–228, Sept 2007Google Scholar
  52. 52.
    Jantet V, Morin L, Guillemot C (2009) Incremental-LDI for multi-view coding. In: Proceedings of 3DTV conference, Potsdam, Germany, pp 1–4, May 2009Google Scholar
  53. 53.
    Daribo I, Saito H (2011) A novel inpainting-based layered depth video for 3DTV. IEEE Trans Broadcast 57(2):533–541CrossRefGoogle Scholar
  54. 54.
    Bartczak B et al (2011) Display-independent 3D-TV production and delivery using the layered depth video format. IEEE Trans Broadcast 57(2):477–490CrossRefGoogle Scholar
  55. 55.
    Lou J, Cai H, Li J (2005) A real-time interactive multi-view video system. In: Proceedings of the 13th annual ACM international conference on multimedia, Hilton, Singapore, Nov 2005Google Scholar
  56. 56.
    Matusik WJ, Pfister H (2004) 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. ACM Trans Graph 23(3):814–824CrossRefGoogle Scholar
  57. 57.
    Cao X, Liu Y, Dai Q (2009) A flexible client-driven 3DTV system for real-time acquisition, transmission, and display of dynamic scenes. EURASIP J Adv Sig Process, vol 2009. Article ID 351452, pp 1–15Google Scholar
  58. 58.
    Stankowski J, Klimaszewski K, Stankiewicz O, Wegner K, Domanski M (2010) Preprocessing methods used for Poznan 3D/FTV test sequences. ISO/IEC JTC1/SC29/WG11 Doc. M17174, Jan 2010Google Scholar
  59. 59.
    Yamamoto K, Kitahara M, Kimata H, Yendo T, Fujii T, Tanimoto M, Shimizu S, Kamikura K, Yashima Y (2007) Multiview video coding using view interpolation and color correction. IEEE Trans Circuits Syst Video Technol 17(11):1436–1449CrossRefGoogle Scholar
  60. 60.
    Fecker U, Barkowsky M, Kaup A (2008) Histogram-based prefiltering for luminance and chrominance compensation of multiview video. IEEE Trans Circuits Syst Video Technol 18(9):1258–1267CrossRefGoogle Scholar
  61. 61.
    Doutre C, Nasiopoulos P (2009) Color correction preprocessing for multi-view video coding. IEEE Trans Circuits Syst Video Technol 19(9):1400–1405CrossRefGoogle Scholar
  62. 62.
    Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334CrossRefGoogle Scholar
  63. 63.
    Hartley R, Zisserman A (2000) Multiple view geometry in computer vision. Cambridge University Press, CambridgeMATHGoogle Scholar
  64. 64.
    Mendiburu B (2009) 3D movie making: stereoscopic digital cinema from script to screen. Focal Press, BurlingtonGoogle Scholar
  65. 65.
    Varekamp C, Barenbrug B (2007) Improved depth propagation for 2D to 3D video conversion using key-frames. In: Proceedings of 4th IET European conference on visual media production, pp 1–7, Nov 2007Google Scholar
  66. 66.
    Roth SD (1982) Ray casting for modeling solids. Comput Graph Image Process 18(2):109–144CrossRefGoogle Scholar
  67. 67.
    Frick A, Bartczak B, Koch R (2010) Real-time preview for layered depth video in 3D-TV. In: Proceedings of real-time image and video processing, vol 7724. pp 77240F-1-10Google Scholar
  68. 68.
    Zhang L, Tam WJ (2005) Stereoscopic image generation based on depth images for 3D TV. IEEE Trans Broadcast 51(2):191–199CrossRefGoogle Scholar
  69. 69.
    Müller K, Smolic A, Dix K, Merkle P, Kauff P, Wiegand T (2008) View synthesis for advanced 3D video systems. EURASIP J Image Video Process, vol 2008. Article ID 438148Google Scholar
  70. 70.
    Tian D, Lai P, Lopez P, Gomila C (2009) View synthesis techniques for 3D video. In: Proceedings of applications of digital image processing XXXII, vol 7443. pp 74430T-1-11Google Scholar
  71. 71.
    Mori Y, Fukushima N, Yendo T, Fujii T, Tanimoto M (2009) View generation with 3D warping using depth information for FTV. Sig Process: Image Commun 24(1–2):65–72CrossRefGoogle Scholar
  72. 72.
    Zinger S, Do L, de With PHN (2010) Free-viewpoint depth image based rendering. J Vis Commun Image Represent 21:533–541CrossRefGoogle Scholar
  73. 73.
    Bertalmio M, Bertozzi AL, Sapiro G (2001) Navier-stokes, fluid dynamics, and image and video inpainting. In: Proceedings of IEEE international conference on computer vision and pattern recognition, pp 355–362Google Scholar
  74. 74.
    Oh K, Yea S, Ho Y (2009) Hole-filling method using depth based in-painting for view synthesis in free viewpoint television (FTV) and 3D video. In: Picture coding symposium (PCS), Chicago, pp 233–236Google Scholar
  75. 75.
    Daribo I, Pesquet-Popescu B (2010) Depth-aided image inpainting for novel view synthesis. In: Proceedings of IEEE international workshop on multimedia signal processing (MMSP)Google Scholar
  76. 76.
    Ndjiki-Nya P, Köppel M, Doshkov D, Lakshman H, Merkle P, Müller K, Wiegand T (2011) Depth image-based rendering with advanced texture synthesis for 3-D video. IEEE Trans Multimedia 13(3):453–465CrossRefGoogle Scholar
  77. 77.
    Schmeing M, Jiang X (2010) Depth image based rendering: a faithful approach for the disocclusion problem. In: Proceedings of 3DTV conference, pp 1–4Google Scholar
  78. 78.
    Zhao Y, Zhu C, Chen Z, Tian D, Yu L (2011) Boundary artifact reduction in view synthesisview synthesis of 3D video: from perspective of texture-depth alignment. IEEE Trans Broadcast 57(2):510–522CrossRefGoogle Scholar
  79. 79.
    Zhao Y, Yu L (2010) A perceptual metric for evaluating quality of synthesized sequences in 3DV system. In: Proceedings of visual communications and image processing (VCIP), July 2010Google Scholar
  80. 80.
    Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576CrossRefGoogle Scholar
  81. 81.
    Vetro A, Yea S, Zwicker M, Matusik W, Pfister H (2007) Overview of multiview video coding and anti-aliasing for 3D displays. In: Proceedings of international conference on image processing, vol 1. pp I-17–I-20, Sept 2007Google Scholar
  82. 82.
    Merkle P, Smolic A, Müller K, Wiegand T (2007) Efficient prediction structures for multiview video coding. IEEE Trans Circuits Syst Video Technol 17(11):1461–1473CrossRefGoogle Scholar
  83. 83.
    Chen Y, Wang Y-K, Ugur K, Hannuksela M, Lainema J, Gabbouj M (2009) The emerging mvc standard for 3D video services. EURASIP J Adv Sig Process 2009(1), Jan 2009Google Scholar
  84. 84.
    Merkle P, Morvan Y, Smolic A, Farin D, Müller K, de With PHN, Wiegand T (2009) The effects of multiview depth video compression on multiview rendering. Sig Process: Image Commun 24(1–2):73–88CrossRefGoogle Scholar
  85. 85.
    Kim W-S, Ortega A, Lai P, Tian D, Gomila C (2010) Depth map coding with distortion estimation of rendered view. In: Proceedings of SPIE visual information processing and communication, vol 7543. pp 75430B–75430B-10Google Scholar
  86. 86.
    Tikanmaki A, Gotchev A, Smolic A, Muller K (2008) Quality assessment of 3D video in rate allocation experiments. In: Proceedings of IEEE international symposium on consumer electronicsGoogle Scholar
  87. 87.
    Kang M-K, Ho Y-S (2010) Adaptive geometry-based intra prediction for depth video coding. In: Proceedings of IEEE international conference on multimedia and expo (ICME), July 2010, pp 1230–1235Google Scholar
  88. 88.
    Kim W-S, Ortega A, Lai P, Tian D, Gomila C (2009) Depth map distortion analysis for view rendering and depth coding. In: Proceedings of international conference on image processingGoogle Scholar
  89. 89.
    Oh K-J, Vetro A, Ho Y-S (2011) Depth coding using a boundary reconstruction filter for 3D video systems. IEEE Trans Circuits Syst Video Technol 21(3):350–359CrossRefGoogle Scholar
  90. 90.
    Zhao Y, Zhu C, Chen Z, Yu L (2011) Depth no-synthesis error model for view synthesis in 3D video. IEEE Trans Image Process 20(8):2221–2228, Aug 2011Google Scholar
  91. 91.
    Daribo I, Tillier C, Pesquet-Popescu B (2008) Adaptive wavelet coding of the depth map for stereoscopic view synthesis. In: Proceedings of IEEE international workshop on multimedia signal processing (MMSP’08), Cairns, Australia, pp 34–39, Oct 2008Google Scholar
  92. 92.
    Liu S, Lai P, Tian D, Chen CW (2011) New depth coding techniques with utilization of corresponding video. IEEE Trans Broadcast 57(2):551–561CrossRefGoogle Scholar
  93. 93.
    Shimizu S, Kitahara M, Kimata H, Kamikura K, Yashima Y (2007) View scalable multi-view video coding using 3-D warping with depth map. IEEE Trans Circuits Syst Video Technol 17(11):1485–1495CrossRefGoogle Scholar
  94. 94.
    Yea S, Vetro A (2009) View synthesis prediction for multiview video coding. Sig Process Image Commun 24(1+2):89–100CrossRefGoogle Scholar
  95. 95.
    Lin YH, Wu JL (2011) A depth information based fast mode decision algorithm for color plus depth-map 3D videos. IEEE Trans Broadcast 57(2):542–550CrossRefGoogle Scholar
  96. 96.
    Merkle P, Wang Y, Müller K, Smolic A, Wiegand T (2009) Video plus depth compression for mobile 3D services. In: Proceedings of 3DTV conferenceGoogle Scholar
  97. 97.
    Wang Y, Zhu Q-F (1998) Error control and concealment for video communication: a review. Proc IEEE 86(5):974–997CrossRefGoogle Scholar
  98. 98.
    Wang Y, Wenger S, Wen J, Katsaggelos A (2000) Error resilient video coding techniques. IEEE Signal Process Mag 17(4):61–82CrossRefGoogle Scholar
  99. 99.
    Stockhammer T, Hannuksela M, Wiegand T (2003) H.264/AVC in wireless environments. IEEE Trans Circuits Syst Video Tech 13(7):657–673CrossRefGoogle Scholar
  100. 100.
    Zhang R, Regunathan SL, Rose K (2000) Video coding with optimal inter/intra-mode switching for packet loss resilience. IEEE J Sel Areas Commun 18(6):966–976CrossRefGoogle Scholar
  101. 101.
    Zhang J, Arnold JF, Frater MR (2000) A cell-loss concealment technique for MPEG-2 coded video. IEEE Trans Circuits Syst Video Technol 10(6):659–665CrossRefGoogle Scholar
  102. 102.
    Agrafiotis D, Bull DR, Canagarajah CN (2006) Enhanced error concealment with mode selection. IEEE Trans Circuits Syst Video Technol 16(8):960–973CrossRefGoogle Scholar
  103. 103.
    Xiang X, Zhao D, Wang Q, Ji X, Gao W (2007) A novel error concealment method for stereoscopic video coding. In: Proceedings of international conference on image processing (ICIP2007), pp 101–104Google Scholar
  104. 104.
    Akar GB, Tekalp AM, Fehn C, Civanlar MR (2007) Transport methods in 3DTV-a survey. IEEE Trans Circuits Syst Video Technol 17(11):1622–1630CrossRefGoogle Scholar
  105. 105.
    Tan AS, Aksay A, Akar GB, Arikan E (2009) Rate-distortion optimization for stereoscopic video streaming with unequal error protection. EURASIP J Adv Sig Process, vol 2009. Article ID 632545, Jan 2009Google Scholar
  106. 106.
    De Silva DVSX, Fernando WAC, Worrall ST (2010) 3D video communication scheme for error prone environments based on motion vector sharing. In: Proceedings of IEEE 3DTV-CON, Tampere, FinlandGoogle Scholar
  107. 107.
    Yan B (2007) A novel H.264 based motion vector recovery method for 3D video transmission. IEEE Trans Consum Electron 53(4):1546–1552CrossRefGoogle Scholar
  108. 108.
    Liu Y, Wang J, Zhang H (2010) Depth image-based temporal error concealment for 3-D video transmission. IEEE Trans Circuits Syst Video Technol 20(4):600–604CrossRefGoogle Scholar
  109. 109.
    Chung TY, Sull S, Kim CS (2011) Frame loss concealment for stereoscopic video plus depth sequences. IEEE Trans Consum Electron 57(3):1336–1344CrossRefGoogle Scholar
  110. 110.
    Howard IP, Rogers BJ (1995) Binocular vision and stereopsis. Oxford University Press, OxfordGoogle Scholar
  111. 111.
    Yano S, Ide S, Mitsuhashi T, Thwaites H (2002) A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 23(4):191–201CrossRefGoogle Scholar
  112. 112.
    Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3):1–30CrossRefGoogle Scholar
  113. 113.
    Lambooij MTM, IJsselsteijn WA, Fortuin M, Heynderickx I (2009) Visual discomfort and visual fatigue of stereoscopic displays: a review. J Imaging Sci Technol 53(3):030201-030201-14. May–Jun 2009Google Scholar
  114. 114.
    Tam WJ, Speranza F, Yano S, Shimono K, Ono H (2011) Stereoscopic 3D-TV: visual comfort. IEEE Trans Broadcast 57(2):335–346CrossRefGoogle Scholar
  115. 115.
    Lang M, Hornung A, Wang O, Poulakos S, Smolic A, Gross M (2010) Nonlinear disparity mapping for stereoscopic 3D. ACM Trans Graph 29(4):75:1–75:10. July 2010Google Scholar
  116. 116.
    Nojiri Y, Yamanoue H, Ide S, Yano S, Okana F (2006) Parallax distribution and visual comfort on stereoscopic HDTV. In: Proceedings of IBC, pp 373–380Google Scholar
  117. 117.
    Gunnewiek RK, Vandewalle P (2010) How to display 3D content realistically. In: Proceedings of international workshop video processing quality metrics consumer electronics (VPQM), Jan 2010Google Scholar
  118. 118.
    Daly SJ, Held RT, Hoffman DM (2011) Perceptual issues in stereoscopic signal processing. IEEE Trans Broadcast 57(2):347–361CrossRefGoogle Scholar
  119. 119.
    Zhao Y, Yu L (2010) A perceptual metric for evaluating quality of synthesized sequences in 3DV system. In: Proceedings of visual communications and image processing (VCIP), July 2010Google Scholar
  120. 120.
    Yamanoue H, Okui M, Okano F (2006) Geometrical analysis of puppet-theatre and cardboard effects in stereoscopic HDTV images. IEEE Trans Circuits Syst Video Technol 16(6):744–752CrossRefGoogle Scholar
  121. 121.
    Wittlief K (2007) Stereoscopic 3D film and animation—getting it right. Comput Graph 41(3). Aug 2007 Avaliable:
  122. 122.
    Sheikh HR, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15(11):3440–3451CrossRefGoogle Scholar
  123. 123.
    Engelke U, Zepernick HJ (2007) Perceptual-based quality metrics for image and video services: a survey. In: 3rd EuroNGI conference on next generation internet networks, pp 190–197Google Scholar
  124. 124.
    Seshadrinathan K, Soundararajan R, Bovik AC, Cormack LK (2010) Study of subjective and objective quality assessment of video. IEEE Trans Image Process 19(16):1427–1441MathSciNetCrossRefGoogle Scholar
  125. 125.
    Chikkerur S, Vijay S, Reisslein M, Karam LJ (2011) Objective video quality assessment methods: a classification, review, and performance comparison. IEEE Trans Broadcast 57(2):165–182CrossRefGoogle Scholar
  126. 126.
    Zhao Y, Yu L, Chen Z, Zhu C (2011) Video quality assessment based on measuring perceptual noise from spatial and temporal perspectives. IEEE Trans Circuits Syst Video Technol 21(12):1890–1902CrossRefGoogle Scholar
  127. 127.
    IJsselsteijn W, de Ridder H, Hamberg R, Bouwhuis D, Freeman J (1998) Perceived depth and the feeling of presence in 3DTV. Displays 18(4):207–214CrossRefGoogle Scholar
  128. 128.
    Yasakethu SLP, Hewage CTER, Fernando WAC, Kondoz AM (2008) Quality analysis for 3D video using 2D video quality models. IEEE Trans Consum Electron 54(4):1969–1976CrossRefGoogle Scholar
  129. 129.
    ITU-R Rec. BT.1438 (2000) Subjective assessment of stereoscopic television pictures. International Telecommunication UnionGoogle Scholar
  130. 130.
    ITU-R Rec. BT.500-11 (2002) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication UnionGoogle Scholar
  131. 131.
    ITU-R (2008) Digital three-dimensional (3D) TV broadcasting. Question ITU-R 128/6Google Scholar
  132. 132.
    Xing L, You J, Ebrahimi T, Perkis A (2010) An objective metric for assessing quality of experience on stereoscopic images. In: Proceedings of IEEE international workshop on multimedia signal processing (MMSP), pp 373–378Google Scholar
  133. 133.
    Goldmann L, Lee JS, Ebrahimi T (2010) Temporal synchronization in stereoscopic video: influence on quality of experience and automatic asynchrony detection. In: Proceedings of international conference on image processing (ICIP), Hong Kong, pp 3241–3244, Sept 2010Google Scholar
  134. 134.
    Levelt WJ (1965) Binocular brightness averaging and contour information. Brit J Psychol 56:1–13CrossRefGoogle Scholar
  135. 135.
    Stelmach LB, Tam WJ (1998) Stereoscopic image coding: effect of disparate image-quality in left- and right-eye views. Sig Process: Image Commun 14:111–117CrossRefGoogle Scholar
  136. 136.
    Zhao Y, Chen Z, Zhu C, Tan Y, Yu L (2011) Binocular just-noticeable-difference model for stereoscopic images. IEEE Signal Process Lett 18(1):19–22CrossRefGoogle Scholar
  137. 137.
    Hewage CTER, Worrall ST, Dogan S, Villette S, Kondoz AM (2009) Quality evaluation of color plus depth map based stereoscopic video. IEEE J Sel Top Sig Process 3(2):304–318CrossRefGoogle Scholar
  138. 138.
    You J, Xing L, Perkis A, Wang X (2010) Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis. In: Proceedings of 5th international workshop on video processing and quality metrics for consumer electronics (VPQM), Scottsdale, AZ, USAGoogle Scholar
  139. 139.
    Benoit A, Le Callet P, Campisi P, Cousseau R (2008) Quality assessment of stereoscopic images. EURASIP J Image Video Process, vol 2008. Article ID 659024Google Scholar
  140. 140.
    Lambooij M (2011) Evaluation of stereoscopic images: beyond 2D quality. IEEE Trans Broadcast 57(2):432–444CrossRefGoogle Scholar
  141. 141.
    Julesz B (1971) Foundations of cyclopean perception. The University of Chicago Press, ChicagoGoogle Scholar
  142. 142.
    Boev A, Gotchev A, Egiazarian K, Aksay A, Akar GB (2006) Towards compound stereo-video quality metric: a specific encoder-based framework. In: Proceedings of IEEE southwest symposium on image analysis and interpretation, pp 218–222Google Scholar
  143. 143.
    Maalouf A, Larabi M-C (2011) CYCLOP: a stereo color image quality assessment metric. In: Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1161–1164Google Scholar
  144. 144.
    Bosc E, Pepion R, Le Callet P, Koppel M, Ndjiki-Nya P, Pressigout M, Morin L (2011) Towards a new quality metric for 3-D synthesized view assessment. IEEE J Sel Top Sig Process 5(7):1332–1343CrossRefGoogle Scholar
  145. 145.
    Shao H, Cao X, Er G (2009) Objective quality assessment of depth image based rendering in 3DTV system. In: Proceedings of 3DTV conference, pp 1–4Google Scholar
  146. 146.
    Dimenco display Available:
  147. 147.
  148. 148.
    Smolic A, Muller K, Merkle P, Kauff P, Wiegand T (2009) An overview of available and emerging 3D video formats and depth enhanced stereo as efficient generic solution. In: Proceedings of picture coding symposium (PCS), pp 389–392Google Scholar
  149. 149.
    Grau O, Borel T, Kauff P, Smolic A, Tanger R (2011) 3D-TV R&D activities in Europe. IEEE Trans Broadcast 57(2):408–420CrossRefGoogle Scholar
  150. 150.
    Seventh Framework Programme (FP7) Available:
  151. 151.
    3D4YOU Available:
  152. 152.
    2020 3D Media Available:
  153. 153.
    Mobile 3DTV Available:
  154. 154.
    3DPHONE Available:
  155. 155.
    Report of SMPTE task force on 3D to the Home Available:
  156. 156.
    Video and Requirement Group (2011) Call for proposals on 3d video coding technology. ISO/IEC JTC1/SC29/WG11 Doc. N12036, Mar 2011Google Scholar
  157. 157.
    Video Group (2011) Standardization tracks considered in 3D video coding. ISO/IEC JTC1/SC29/WG11 Doc. N12434, Dec 2011Google Scholar
  158. 158.
    Video and Requirement Group (2011) Draft call for proposals on mpeg frame-compatible enhancement. ISO/IEC JTC1/SC29/WG11 Doc. N12249, Jul 2011Google Scholar
  159. 159.
    Tourapis AM, Pahalawatta P, Leontaris A, He Y, Ye Y, Stec K, Husak W (2010) A frame compatible system for 3D delivery. ISO/IEC JTC1/SC29/WG11 Doc. M17925, Jul 2010Google Scholar
  160. 160.
    Wu Y, Hirakawa S, Reimers U, Whitaker J (2006) Overview of digital television development worldwide. Proc IEEE 94(1):8–21CrossRefGoogle Scholar
  161. 161.
    Reimers U (2006) DVB–the family of international standards for digital video broadcasting. Proc IEEE 94(1):173–182CrossRefGoogle Scholar
  162. 162.
    Richer MS, Reitmeier G, Gurley T, Jones GA, Whitaker J, Rast R (2006) The ATSC digital television system. Proc IEEE 94(1):37–42CrossRefGoogle Scholar
  163. 163.
    European Telecommunications Standard Institute ETSI (2011) Digital video broadcasting (DVB): frame compatible plano-stereoscopic 3DTV (DVB-3DTV). DVB Document A154, Feb 2011Google Scholar
  164. 164.
  165. 165.
    Report ITU-R BT.2160 (2010) Features of three-dimensional television video systems for broadcasting. International Telecommunication UnionGoogle Scholar
  166. 166.
    Final 3-D Blu-ray specification announced Available:
  167. 167.
  168. 168.
    CEA begins standards process for 3D glasses Available:
  169. 169.
    Steering teams—overview Available:
  170. 1670.
    Bruls F, Gunnewiek RK, van de Walle P (2009) Philips response to new call for 3DV test material: arrive book and mobile. ISO/IEC JTC1/SC29/WG11 Doc. M16420, Apr 2009Google Scholar
  171. 171.
    Microsoft 3D video test sequences Available:
  172. 172.
    Tanimoto M, Fujii T, Suzuki K (2009) View synthesis algorithm in view synthesis reference software 2.0 (VSRS2.0). ISO/IEC JTC1/SC29/WG11 Doc. M16090, Lausanne, Switzerland, Feb 2009Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information Science and Electronic EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.Department of Electrical Engineering and Computer ScienceGraduate School of Engineering, Nagoya UniversityNagoyaJapan

Personalised recommendations