Skip to main content

Basics of Manifolds and Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras

  • Chapter
  • First Online:
Geometric Methods and Applications

Part of the book series: Texts in Applied Mathematics ((TAM,volume 38))

Abstract

This chapter is an introduction to manifolds, Lie groups, and Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics. Addison-Wesley, second edition, 1978.

    Google Scholar 

  2. Vincent Arsigny. Processing Data in Lie Groups: An Algebraic Approach. Application to Non-Linear Registration and Diffusion Tensor MRI. PhD thesis, ’ Ecole Polytechnique,Palaiseau, France, 2006. Thèse de Sciences.

    Google Scholar 

  3. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine,56(2):411–421, 2006.

    Article  Google Scholar 

  4. Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. on Matrix Analysis and Applications, 29(1):328–347, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  5. Vincent Arsigny, Xavier Pennec, and Nicholas Ayache. Polyrigid and polyaffine transformations: a novel geometrical tool to deal with non-rigid deformations-application to the registration of histological slices. Medical Image Analysis, 9(6):507–523, 2005.

    Article  Google Scholar 

  6. Michael Artin. Algebra. Prentice-Hall, first edition, 1991.

    Google Scholar 

  7. R.S. Ball. The Theory of Screws. Cambridge University Press, first edition, 1900.

    Google Scholar 

  8. Marcel Berger and Bernard Gostiaux. G´eom´etrie diff´erentielle: vari´et´es, courbes et surfaces. Collection Math’ematiques. Puf, second edition, 1992. English edition: Differential geometry,manifolds, curves, and surfaces, GTM No. 115, Springer-Verlag.

    Google Scholar 

  9. T. Br‥ocker and T. tom Dieck. Representation of Compact Lie Groups. GTM, Vol. 98. Springer-Verlag, first edition, 1985.

    Google Scholar 

  10. Henri Cartan. Cours de Calcul Diff´erentiel. Collection M’ethodes. Hermann, 1990.

    Google Scholar 

  11. Roger Carter, Graeme Segal, and Ian Macdonald. Lectures on Lie Groups and Lie Algebras. Cambridge University Press, first edition, 1995.

    Google Scholar 

  12. Claude Chevalley. Theory of Lie Groups I. Princeton Mathematical Series, No. 8. Princeton University Press, first edition, 1946.

    Google Scholar 

  13. Yvonne Choquet-Bruhat, C’ecile DeWitt-Morette, and Margaret Dillard-Bleick. Analysis,Manifolds, and Physics, Part I: Basics. North-Holland, first edition, 1982.

    Google Scholar 

  14. Morton L. Curtis. Matrix Groups. Universitext. Springer-Verlag, second edition, 1984.

    Google Scholar 

  15. Manfredo P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.

    Google Scholar 

  16. Manfredo P. do Carmo. Riemannian Geometry. Birkh‥auser, second edition, 1992.

    Google Scholar 

  17. R.L. Bryant. An introduction to Lie groups and symplectic geometry. In D.S. Freed and K.K. Uhlenbeck, editors, Geometry and Quantum Field Theory, pages 5–181. AMS, Providence,RI, 1995.

    Google Scholar 

  18. William Fulton and Joe Harris. Representation Theory, A First Course. GTM No. 129. Springer-Verlag, first edition, 1991.

    MATH  Google Scholar 

  19. S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Universitext. Springer-Verlag,second edition, 1993.

    Google Scholar 

  20. Victor Guillemin and Alan Pollack. Differential Topology. Prentice-Hall, first edition, 1974.

    Google Scholar 

  21. Brian Hall. Lie Groups, Lie Algebras, and Representations. An Elementary Introduction. GTM No. 222. Springer Verlag, first edition, 2003.

    Google Scholar 

  22. K.H. Hunt. Kinematic Geometry of Mechanisms. Clarendon Press, first edition, 1978.

    Google Scholar 

  23. Roger Howe. Very basic Lie theory. American Mathematical Monthly, 90:600–623, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  24. M.J. Kim, M.S. Kim, and S.Y. Shin. A general construction scheme for unit quaternion curves with simple high-order derivatives. In Computer Graphics Proceedings, Annual Conference Series, pages 369–376. ACM, 1995.

    Google Scholar 

  25. M.J. Kim, M.S. Kim, and S.Y. Shin. A compact differential formula for the first derivative of a unit quaternion curve. Journal of Visualization and Computer Animation, 7:43–57, 1996.

    Article  Google Scholar 

  26. Anthony W. Knapp. Lie Groups Beyond an Introduction. Progress in Mathematics, Vol. 140. Birkh‥auser, first edition, 1996.

    Google Scholar 

  27. Jacques Lafontaine. Introduction aux Vari´et´es Diff´erentielles. PUG, first edition, 1996.

    Google Scholar 

  28. Serge Lang. Real and Functional Analysis. GTM 142. Springer-Verlag, third edition, 1996.

    Google Scholar 

  29. Serge Lang. Undergraduate Analysis. UTM. Springer-Verlag, second edition, 1997.

    Google Scholar 

  30. John M. Lee. Introduction to Smooth Manifolds. GTM No. 218. Springer Verlag, first edition,2006.

    Google Scholar 

  31. J.M. McCarthy. Introduction to Theoretical Kinematics. MIT Press, first edition, 1990.

    Google Scholar 

  32. Jerrold E. Marsden and Jim Ostrowski. Symmetries in motion: Geometric foundations of motion control. Nonlinear Science Today, 1998.

    Google Scholar 

  33. Jerrold E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry. TAM, Vol. 17. Springer-Verlag, first edition, 1994.

    Google Scholar 

  34. Yukio Matsumoto. An Introduction to Morse Theory. Translations of Mathematical Monographs No 208. AMS, first edition, 2002.

    Google Scholar 

  35. JohnW. Milnor. Topology from the Differentiable Viewpoint. The University Press of Virginia,second edition, 1969.

    Google Scholar 

  36. John W. Milnor. Morse Theory. Annals of Math. Series, No. 51. Princeton University Press,third edition, 1969.

    Google Scholar 

  37. R. Mneimn’e and F. Testard. Introduction `a la Th´eorie des Groupes de Lie Classiques. Hermann,first edition, 1997.

    Google Scholar 

  38. James R. Munkres. Analysis on Manifolds. Addison-Wesley, 1991.

    Google Scholar 

  39. R.M. Murray, Z.X. Li, and S.S. Sastry. A Mathematical Introduction to Robotics Manipulation. CRC Press, first edition, 1994.

    Google Scholar 

  40. F.C. Park and B. Ravani. B’ezier curves on Riemannian manifolds and Lie groups with kinematic applications. ASME J. Mech. Des., 117:36–40, 1995.

    Article  Google Scholar 

  41. F.C. Park and B. Ravani. Smooth invariant interpolation of rotations. ACM Transactions on Graphics, 16:277–295, 1997.

    Article  Google Scholar 

  42. D.H. Sattinger and O.L. Weaver. Lie Groups and Algebras with Applications to Physics,Geometry, and Mechanics. pplied Math. Science, Vol. 61. Springer-Verlag, first edition,1986.

    Google Scholar 

  43. Laurent Schwartz. Analyse II. Calcul Diff´erentiel et Equations Diff´erentielles. Collection Enseignement des Sciences. Hermann, 1992.

    Google Scholar 

  44. J.M. Selig. Geometrical Methods In Robotics. Monographs In Computer Science. Springer-Verlag, first edition, 1996.

    Google Scholar 

  45. S. Sternberg. Lectures On Differential Geometry. AMS Chelsea, second edition, 1983.

    Google Scholar 

  46. Loring W. Tu. An Introduction to Manifolds. Universitext. Springer Verlag, first edition,2008.

    Google Scholar 

  47. Frank Warner. Foundations of Differentiable Manifolds and Lie Groups. GTM No. 94. Springer-Verlag, first edition, 1983.

    Google Scholar 

  48. Hermann Weyl. The Classical Groups. Their Invariants and Representations. Princeton Mathematical Series, No. 1. Princeton University Press, second edition, 1946.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gallier .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this chapter

Cite this chapter

Gallier, J. (2011). Basics of Manifolds and Classical Lie Groups: The Exponential Map, Lie Groups, and Lie Algebras. In: Geometric Methods and Applications. Texts in Applied Mathematics, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9961-0_18

Download citation

Publish with us

Policies and ethics