Dirichlet–Voronoi Diagrams and Delaunay Triangulations

  • Jean Gallier
Part of the Texts in Applied Mathematics book series (TAM, volume 38)


In this chapter we present the concepts of a Voronoi diagram and of a Delaunay triangulation. These are important tools in computational geometry, and Delaunay triangulations are important in problems where it is necessary to fit 3D data using surface splines. It is usually useful to compute a good mesh for the projection of this set of data points onto the xy-plane, and a Delaunay triangulation is a good candidate. Our presentation will be rather sketchy.We are primarily interested in defining these concepts and stating their most important properties without proofs. For a comprehensive exposition of Voronoi diagrams, Delaunay triangulations, and more topics in computational geometry, our readers may consult O’Rourke [10], Preparata and Shamos [11], Boissonnat and Yvinec [2], de Berg, Van Kreveld, Overmars, and Schwarzkopf [1], or Risler [12]. The survey by Graham and Yao [7] contains a very gentle and lucid introduction to computational geometry.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry. Algorithms and Applications. Springer-Verlag, first edition, 1997.Google Scholar
  2. 2.
    J.-D. Boissonnat and M. Yvinec. G´eom´etrie Algorithmique. Ediscience International, first edition, 1995.Google Scholar
  3. 3.
    K.Q. Brown. Voronoi diagrams from convex hulls. Inform. Process. Lett., 9:223–228, 1979.MATHCrossRefGoogle Scholar
  4. 4.
    G.L. Dirichlet. U‥ ber die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal f¨ur die reine und angewandte Mathematik, 40:209–227,1850.Google Scholar
  5. 5.
    H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete Computational Geometry, 1:25–44, 1986.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    E.N. Gilbert. Random subdivisions of space into crystals. Annals of Math. Stat., 33:958–972,1962.Google Scholar
  7. 7.
    R. Graham and F. Yao. A whirlwind tour of computational geometry. American Mathematical Monthly, 97(8):687–701, 1990.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    William S. Massey. A Basic Course in Algebraic Topology. GTM No. 127. Springer-Verlag,first edition, 1991.Google Scholar
  9. 9.
    James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, first edition, 1984.Google Scholar
  10. 10.
    Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, second edition,1998.Google Scholar
  11. 11.
    F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,first edition, 1988.Google Scholar
  12. 12.
    J.-J. Risler. Mathematical Methods for CAD. Masson, first edition, 1992.Google Scholar
  13. 13.
    M.G. Voronoi. Nouvelles applications des param`etres continus `a la th’eorie des formes quadratiques. J. Reine u. Agnew. Math., 134:198–287, 1908.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations