Skip to main content

In Situ Characterizations of Thin-Film Nanostructures with Large-Range Direct Force Sensing

  • Chapter
  • First Online:
Signal Measurement and Estimation Techniques for Micro and Nanotechnology
  • 627 Accesses

Abstract

Thin-film nanostructures from various materials have a great potential to further miniaturize the devices like nanoelectronics and micromachines. Recently semiconductor nanofilms, mono or multiple atomic layer carbon nanofilms have been synthesized. However, the precise electrical and mechanical properties of these structures still need to be characterized in more detail. In this chapter, we introduce a large range force sensing tool that we recently developed. Three-dimensional piezorsistive helical nanobelts (HNB) will be described including their giant piezoresistivity. Their large force sensing range is characterized and calibrated by incorporating in situ scanning electron microscope (SEM) tuning fork sensors. This in situ characterization clearly revealed the non-constant stiffnesses of HNBs. Finally, as an application example, mechanical properties of nanowires are characterized by the HNBs. The proposed large range force characterization system is useful and promising toward creating thin-film micro and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaillet, N., Regnier, S.: Microrobotics for Micromanipulation. John Wiley and Sons (2010)

    Google Scholar 

  2. Dong, L., Nelson, B.: Tutorial - Robotics in the small part II: Nanorobotics. Rob. Auto. Mag. IEEE. 14(3), 111–121 (2007)

    Article  MATH  Google Scholar 

  3. Nelson, B., Dong, L., Subramanian, A., Bell, D.: Hybrid nanorobotic approaches to NEMS. Rob, Res. 163–174 (2007)

    Google Scholar 

  4. Nagato, K., Kojima, Y., Kasuya, K., Moritani, H., Hamaguchi, T., Nakao, M.: Local synthesis of tungsten oxide nanowires by current heating of designed micropatterned wires. Appl. Phys. Exp., 1, 014005 (2008)

    Article  Google Scholar 

  5. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A.: Electric field effect in atomically thin carbon lms. Science, 306(5696), 666–669 (2004)

    Article  Google Scholar 

  6. Sun, Y., Nelson, B. J., Greminger, M. A.: Investigating protein structure change in the zona pellucida with a microrobotic system. Int. J. of Rob. Res., 24(2-3), 211–218 (2005)

    Article  Google Scholar 

  7. Sun, Y., Nelson, B. J.: MEMS for cellular force measurements and molecular detection. J. Info. Acq., 1(1), 23–32 (2004)

    Article  Google Scholar 

  8. Xie, H., Vitard, J., Haliyo, S., Regnier.: Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor. Rev. Sci. Inst., 79, 033708 (2008)

    Google Scholar 

  9. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290 (1986)

    Article  Google Scholar 

  10. Pacoret, C., Bowman, R., Gibson, G., Haliyo, S., Carberry, D., Bergander, A., Regnier, S., Padgett, M. Touching the microworld with force-feedback optical tweezers. Opt. Exp., 17(12), 10260 (2009)

    Article  Google Scholar 

  11. Hwang, G., Hashimoto, H., Bell, D. J., Dong, L. X., Nelson, B. J., Schn, S.: Piezoresistive InGaAs/GaAs Nanosprings with Metal Connectors. Nano Lett., 9(2), 554–561 (2009)

    Article  Google Scholar 

  12. Karrai, K., Grober, R. D.: Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 66, 1842 (1995)

    Article  Google Scholar 

  13. Niyogi, S., Thamankar, R. M., Chaiang, Y., Kawakami, R., Myung, N. V., Haddon, R. C.: Magnetically Assembled Multiwalled Carbon Nanotubes of Ferromagnetic Contacts. J. of Phys. Chem. B, 108, 19818–19824 (2004)

    Article  Google Scholar 

  14. Bentley, A., Trethewey, J., Ellis, A., Crone, W.: Magnetic manipulation of copper-tin nanowires capped with nickel ends. Nano Lett., 4, 487–490 (2004)

    Article  Google Scholar 

  15. Hwang, G., Hashimoto, H.: Development of a Human-Robot-Shared Controlled Teletweezing System. IEEE Trans. Cont. Sys. Tech., 15, 960–966 (2007)

    Article  Google Scholar 

  16. Park, S. J., Goodman, M. B., Pruitt, B. L.: Analysis of nematode mechanics by piezoresistive displacement clamp. Proc. of the Natl. Aca. of Sci., 104, 17376–17381 (2007)

    Article  Google Scholar 

  17. He, R., Yang, P. D.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotech., 1, 42–46 (2006)

    Article  Google Scholar 

  18. Toriyama, T., Funai, D., Sugiyama, S.: Piezoresistance measurement on single crystal silicon nanowires. J. of Appl. Phys., 93, 561–565 (2003)

    Article  Google Scholar 

  19. Acosta, J. C., Hwang, G., Polesel-Maris, J., Regnier, S.: A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope. Rev. Sci. Instrum., 82, 035116 (2011)

    Article  Google Scholar 

  20. Bell D. J., Dong, L., Zhang, L., Golling, M., Nelson, B. J., Gruetzmacher, D.: Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett., 6, 725–729 (2006)

    Article  Google Scholar 

  21. Madou, M. J.: Fundamentals of Microfabriation. CRC press, (2006)

    Google Scholar 

  22. Timo, S., Choi, T., Schirmer, N., Bieri, N., Burg, B., Tharian, J., Sennhauser, U., Poulikakos, D.: A dielectrophoretic method for high yield deposition of suspended, individual carbon nanotubes with 4-point electrode contact. Nano Lett., 7, 3633–3638 (2007)

    Article  Google Scholar 

  23. Schroder, D. K.: Semiconductor Material and Device Characterization. New Jersey: Willy-Interscience (2006)

    Google Scholar 

  24. Stampfer, C., Helbling, T., Obergfell, D., Scholberle, B., Tripp, M. K., Jungen, A., Roth, S., Bright, V. M., Hierold, C.: Fabrication of Single-Walled Carbon-Nanotube-Based Pressure Sensors. Nano Lett. 6, 233–237 (2006)

    Article  Google Scholar 

  25. Stampfer, C., Jungen, A., Linderman, R., Obergfell, D., Roth, S., Hierold, C.: Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett., 6, 1449–1453 (2006)

    Article  Google Scholar 

  26. Molhave, K., Madsen, D., Dohn, S., Boggid, P.: Constructing, connecting and soldering nanostructures by environmental electron beam deposition. Nanotech., 15, 1047–1053 (2004)

    Article  Google Scholar 

  27. Dong, L. X., Arai, F., Fukuda, T.: Electron-beam-induced deposition with carbon nanotube emitters. Appl. Phys. Lett., 81, 1919–1921 (2002)

    Article  Google Scholar 

  28. Hjort, K., Soderkvist, J., Schweitz, J. A.: Gallium-arsenide as a mechanical material. Journal of Micromechanics and Microeng., 4, 1–13 (1994)

    Article  Google Scholar 

  29. Chen, X., Zhang, S., Dikin, D. A., Ding, W., Ruoff, R. S., Pan, L., Nakayama, Y.: Mechanics of a Carbon Nanocoil. Nano Lett., 3, 1299–1304 (2003)

    Article  Google Scholar 

  30. Kanda, Y.: A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. on Elect. Dev., 29, 64–70 (1982)

    Article  Google Scholar 

  31. Harley, J. A., Kenny, T. W.: High-sensitivity piezoresistive cantilevers under 1000 A thick. Appl. Phys. Lett., 75, 289–291 (1999)

    Article  Google Scholar 

  32. Tabib-Azar, M., Wang, R., Xie, Y., You, L.: Self-welded metal catalyzed carbon nanotube piezoresistors with very large longitudinal piezoresistivity of ∼ 4 ×10 − 8 Pa  − 1. Proc. of the 1st IEEE Intl. Conf. on Nano/Micro Eng. and Mol. Sys., 1297–1302 (2006)

    Google Scholar 

  33. Saya, D., Belaubre, P., Mathieu, F., Lagrange, D., Pourciel, J., Bergaud, C.: Si-piezoresistive microcantilevers for highly integrated parallel force detection applications. Sens. and Act. A, 123-124, 23–29 (2005)

    Google Scholar 

  34. Katan, A. J., Van Es, M. H., Oosterkamp, T. H.: Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique. Nanotech., 20(16), 165703 (2009)

    Article  Google Scholar 

  35. Hu, S., Raman, A.: Inverting amplitude and phase to reconstruct tipsample interaction forces in tapping mode atomic force microscopy. Nanotech., 19, 375704 (2008)

    Article  Google Scholar 

  36. Giessibl, F. J.: Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B, 56, 16010 (1997)

    Article  Google Scholar 

  37. Sader, J. E., Jarvis, S. P.: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett., 84, 1801 (2004)

    Article  Google Scholar 

  38. Albrecht, T. R., Grutter, P., Horne, D., Rugar, D.: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. of Appl. Phys., 69, 668 (1991)

    Article  Google Scholar 

  39. Sader, J. E., Uchihashi, T., Higgins, M. J., Farrell, A., Nakayama, Y., Jarvis, S. P.: Quantitative force measurements using frequency modulation atomic force microscopytheoretical foundations. Nanotech., 16, S94 (2005)

    Article  Google Scholar 

  40. Castellanos-Gomez, A., Agrat, N., Rubio-Bollinger, G.: Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotech., 20 (2009)

    Google Scholar 

  41. Voncken, M., Schermer, J., Bauhuis, G., Mulder, P., Larsen, P.: Multiple release layer study of the intrinsic lateral etch rate of the epitaxial lift-off process. Appl. Phys. A: mat. sci. and proc., 79, 1801–1807 (2004)

    Google Scholar 

  42. Gu, Y., Kwak, E. S., Lensch, J. L., Allen, J. E., Odom, T. W., Lauhon, L. J.: Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87, 43111 (2005)

    Article  Google Scholar 

  43. Kojima, Y., Kasuya, K., Ooi, T., Nagato, K., Takayama, K., Nakao, M.: Effects of Oxidation during Synthesis on Structure and Field-Emission Property of Tungsten Oxide Nanowires. Jap. J. Appl. Phys. 46, 6250 (2007)

    Article  Google Scholar 

  44. Liu, K. H., Wang, W. L., Xu, Z., Liao, L., Bai, X. D., Wang, E. G.: In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl. Phys. Lett. 89, 221908 (2006)

    Article  Google Scholar 

  45. Chen, J., Dai, Y. Y., Luo, J., Li, Z. L., Deng, S. Z., She, J. C., Xu, N. S.: Field emission display device structure based on double-gate driving principle for achieving high brightness using a variety of field emission nanoemitters. Appl. Phys. Lett. 90, 253105 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilgueng Hwang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hwang, G., Acosta, J.C., Hashimoto, H., Regnier, S. (2011). In Situ Characterizations of Thin-Film Nanostructures with Large-Range Direct Force Sensing. In: Clévy, C., Rakotondrabe, M., Chaillet, N. (eds) Signal Measurement and Estimation Techniques for Micro and Nanotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9946-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9946-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9945-0

  • Online ISBN: 978-1-4419-9946-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics