Electronic Properties of Post-transition Metal Oxide Semiconductor Surfaces

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 149)


Metal oxides such as ZnO, Ga2O3, CdO, In2O3, and SnO2 exhibit high degree of transparency to visible light while supporting high levels electrical conductivity. The causes of the conductivity and the role played by the surface are current topics of research. This chapter presents a systematic study of the electronic structure and electrical properties of these post-transition metal oxides (PTMO) using a combination of X-ray photoelectron spectroscopy, angle-resolved photoelectron spectroscopy, Hall effect, infrared reflectivity, and optical absorption spectroscopy measurements. Evidence of surface electron accumulation in these PTMO is presented. It is found that for CdO and In2O3, electron accumulation is observed even in the absence of extremely high doping levels. The results also indicate that despite the strong tendency to exhibit surface electron accumulation, these materials can also exhibit an electron depletion layer under the appropriate surface stoichiometry conditions or when certain anions are adsorbed. The proclivity towards surface electron accumulation shown by the PTMOs is discussed in terms of bulk band structure, surface states, and the position of their band edges in an absolute energy scale. The electronic properties of thin films and bulk crystals of the PTMO surfaces also provide information vital for the interpretation of conductivity measurements of PTMO nanostructures, which are often dominated by surface effects.


Fermi Level Electron Accumulation Charge Neutrality Level Electron Depletion Surface Fermi Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The following people are gratefully acknowledged for fruitful collaborations on determining the surface electronic properties of PTMOs: P. H. Jefferson, J. Zúniga-Peréz, V. Muñoz-Sanjosé, Ch. Y. Wang, V. Cimalla, O. Ambacher, A. Bourlange, D. J. Payne, K. H. L. Zhang, R. G. Egdell, M. W. Allen, S. M. Durbin, N. Peng, W. M. Linhart, G. R. Bell, I. Maskery, L. F. J. Piper, K. E. Smith, E. D. L. Rienks, M. Fuglsang Jensen, Ph. Hofmann, F. Fuchs, A. Schleife, J. Furthmüller, and F. Bechstedt. The Engineering and Physical Sciences Research Council, UK, is acknowledged for funding a Career Acceleration Fellowship for TDV (Grant no. EP/G004447/1).


  1. 1.
    Calarco, R., Marso, M.: GaN and InN nanowires grown by MBE: A comparison. Appl. Phys. A 87, 499–503 (2007)CrossRefGoogle Scholar
  2. 2.
    Richter, T., Lüth, H., Schäpers, Th, Meijers, R., Jeganathan, K., Estévez Hernández, S., Calarco, R., Marso, M.: Electrical transport properties of single undoped and n-type doped InN nanowires. Nanotechnology 20, 405206 (1–6) (2009)CrossRefGoogle Scholar
  3. 3.
    Mahboob, I., Veal, T.D., McConville, C.F., Lu, H., Schaff, W.J.: Intrinsic electron accumulation at clean InN surfaces. Phys. Rev. Lett. 92, 036804 (1–4) (2004)CrossRefGoogle Scholar
  4. 4.
    King, P.D.C., Veal, T.D., Lu, H., Jefferson, P.H., Hatfield, S.A., Schaff, W.J., McConville, C.F.: Surface electronic properties of n- and p-type InGaN alloys. Phys. Stat. Sol. (b) 245, 881–883 (2008)CrossRefGoogle Scholar
  5. 5.
    Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., Sberveglieri, G.: Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater. Sci. 54, 1–67 (2009)CrossRefGoogle Scholar
  6. 6.
    King, P.D.C., Veal, T.D., McConville, C.F.: Nonparabolic coupled Poisson-Schrödinger solutions for quantized electron accumulation layers: Band bending, charge profile, and subbands at InN surfaces. Phys. Rev. B 77, 125305 (1–7) (2008)Google Scholar
  7. 7.
    Heiland, G., Kunstman, P.: Polar surfaces of ZnO crystals. Surf. Sci. 13, 72–84 (1969)CrossRefGoogle Scholar
  8. 8.
    Schmidt, O., Kiesel, P., Ehrentraut, D., Fukuda, T., Johnson, N.M.: Electrical characterization of ZnO, including analysis of surface conductivity. Appl. Phys. A 88, 71–75 (2007)CrossRefGoogle Scholar
  9. 9.
    Allen, M.W., Swartz, C.H., Myers, T.H., Veal, T.D., McConville, C.F., Durbin, S.M.: Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B 81, 075211 (1–6) (2010)Google Scholar
  10. 10.
    Chiu, S.-P., Lin, Y.-H., Lin, J.-J.: Electrical conduction mechanisms in natively doped ZnO nanowires. Nanotechnology 20, 015203 (1–8) (2009)Google Scholar
  11. 11.
    Posternak, M., Baldereschi, A., Catellani, A., Resta, R.: Ab initio study of the spontaneous polarization of pyroelectric BeO. Phys. Rev. Lett. 64, 1777–1780 (1990)CrossRefGoogle Scholar
  12. 12.
    Roy, R., Hill, V.G., Osborn, E.F.: Polymorphism of Ga2O3 and the system Ga2O3-H2O. J. Am. Chem. Soc. 74, 719–722 (1952)CrossRefGoogle Scholar
  13. 13.
    Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G.: Ga2O3films for electronic and optoelectronic applications. J. Appl. Phys. 77, 686–693 (1995)CrossRefGoogle Scholar
  14. 14.
    Orita, M., Ohta, H., Hirano, M., Hosono, H.: Deep-ultraviolet transparent conductive β- Ga2O3thin films. Appl. Phys. Lett. 77, 4166–4168 (2000)CrossRefGoogle Scholar
  15. 15.
    Fleischer, M., Meixner, H.: Sensing reducing gases at high temperatures using long-term stable Ga2O3thin films. Sens. Actuators B: Chem 7, 257–261 (1992)CrossRefGoogle Scholar
  16. 16.
    Geistlinger, H.: Accumulation layer model for Ga2O3 thin-film gas sensors based on the Volkenstein theory of catalysis. Sens. Actuators B: Chem 18–19, 125–131 (1994)CrossRefGoogle Scholar
  17. 17.
    Lovejoy, T.C., Yitamben, E.N., Shamir, N., Morales, J., Villora, E.G., Shimamura, K., Zheng, S., Ohuchi, F.S., Olmstead, M.A.: Surface morphology and electronic structure of bulk single crystal β-Ga2O3(100). Appl. Phys. Lett. 94, 081906 (1–3) (2009)CrossRefGoogle Scholar
  18. 18.
    Jefferson, P.H., Hatfield, S.A., Veal, T.D., King, P.D.C., McConville, C.F., Zúñiga-Pérez, J., Muñoz-Sanjosé, V.: Bandgap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92, 022101 (1–3) (2008)CrossRefGoogle Scholar
  19. 19.
    Benko, F.A., Koffyberg, F.P.: Quantum efficiency and optical transitions of CdO photoanodes. Solid State Commun. 57, 901–903 (1986)CrossRefGoogle Scholar
  20. 20.
    Koffyberg, F.P.: Thermoreflectance spectra of CdO: Band gaps and band-population effects. Phys. Rev. B 13, 4470–4476 (1976)CrossRefGoogle Scholar
  21. 21.
    King, P.D.C., Veal, T.D., Schleife, A., Zúñiga-Pérez, J., Martel, B., Jefferson, P.H., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., McConville, C.F.: Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations. Phys. Rev. B 79, 205205 (1–6) (2009)Google Scholar
  22. 22.
    Schleife, A., Fuchs, F., Furthmüller, J., Bechstedt, F.: First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73, 245212 (2006)CrossRefGoogle Scholar
  23. 23.
    Makuta, I.D., Poznyak, S.K., Kulak, A.I.: Hole diffusion transport and photocurrent generation in the degenerate n-CdO/electrolyte junction. Solid State Commun. 76, 65–68 (1990)CrossRefGoogle Scholar
  24. 24.
    Piper, L.F.J., Colakerol, L., King, P.D.C., Schleife, A., Zúñiga-Pérez, J., Glans, P.-A., Learmonth, T., Federov, A., Veal, T.D., Fuchs, F., Muñoz-Sanjosé, V., Bechstedt, F., McConville, C.F., Smith, K.E.: Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Phys. Rev. B 78, 165127 (1–5) (2008)CrossRefGoogle Scholar
  25. 25.
    King, P.D.C., Veal, T.D., Jefferson, P.H., Zúñiga-Pérez, J., Muñoz-Sanjosé, V., McConville, C.F.: Unification of the electrical behavior of defects, impurities, and surface states in semiconductors: Virtual gap states in CdO. Phys. Rev. B 79, 035203 (1–6) (2009)Google Scholar
  26. 26.
    King, P.D.C., Veal, T.D., McConville, C.F., Zúñiga-Pérez, J., Muñoz-Sanjosé, V., Hopkinson, M., Rienks, E.D.L., Fuglsang, J.M., Hofmann, Ph: Surface band-gap narrowing in quantized electron accumulation layers. Phys. Rev. Lett. 104, 256803 (1–4) (2010)CrossRefGoogle Scholar
  27. 27.
    Weiher, R.L., Ley, R.P.: Optical properties of indium oxide. J. Appl. Phys. 37, 299–302 (1966)CrossRefGoogle Scholar
  28. 28.
    Matino, F., Persano, L., Arima, V., Pisignano, D., Blyth, R.I.R., Cingolani, R., Rinaldi, R.: Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys. Rev. B 72, 085437 (1–6) (2005)CrossRefGoogle Scholar
  29. 29.
    Walsh, A., Da Silva, J.L.F., Wei, S.-H., Körber, C., Klein, A., Piper, L.F.J., DeMasi, A., Smith, K.E., Panaccione, G., Torelli, P., Payne, D.J., Bourlange, A., Egdell, R.G.: Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. Phys. Rev. Lett. 100, 167402 (1–4) (2008)Google Scholar
  30. 30.
    Fuchs, F., Bechstedt, F.: Indium-oxide polymorphs from first principles: Quasiparticle electronic states. Phys. Rev. B 77, 155107 (1–10) (2008)Google Scholar
  31. 31.
    King, P.D.C., Veal, T.D., Fuchs, F., Wang, C.Y., Payne, D.J., Bourlange, A., Zhang, H., Bell, G.R., Cimalla, V., Ambacher, O., Egdell, R.G., Bechstedt, F., McConville, C.F.: Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Phys. Rev. B 79, 205211 (1–10) (2009)Google Scholar
  32. 32.
    Christou, V., Etchells, M., Renault, O., Dobson, P.J., Salata, O.V., Beamson, G., Egdell, R.G.: High resolution x-ray photoemission study of plasma oxidation of indium–tin–oxide thin film surfaces. J. Appl. Phys. 88, 5180–5187 (2000)CrossRefGoogle Scholar
  33. 33.
    Gassenbauer, Y., Schafranek, R., Klein, A., Zafeiratos, S., Hävecker, M., Knop-Gericke, A., Schlögl, R.: Surface states, surface potentials, and segregation at surfaces of tin-doped In2O3. Phys. Rev. B 73, 245312 (1–11) (2006)CrossRefGoogle Scholar
  34. 34.
    King, P.D.C., Veal, T.D., Payne, D.J., Bourlange, A., Egdell, R.G., McConville, C.F.: Surface electron accumulation and the charge neutrality level in In2O3. Phys. Rev. Lett. 101, 116808 (1–4) (2008)Google Scholar
  35. 35.
    Zhang, K.H.L., Payne, D.J., Palgrave, R.G., Lazarov, V.K., Chen, W., Wee, A.T.S., McConville, C.F., King, P.D.C., Veal, T.D., Panaccione, G., Lacovig, P., Egdell, R.G.: Surface structure and electronic properties of In2O3(111) single-crystal thin films grown on Y-stabilized ZrO2(111). Chem. Mater. 21, 4353–4355 (2009)CrossRefGoogle Scholar
  36. 36.
    Fröhlich, D., Kenklies, R., Helbig, R.: Band-gap assignment in SnO2 by two-photon spectroscopy. Phys. Rev. Lett. 41, 1750–1751 (1978)CrossRefGoogle Scholar
  37. 37.
    Schleife, A., Varley, J.B., Fuchs, F., Rödl, C., Bechstedt, F., Rinke, P., Janotti, A., Van de Walle, C.G.: Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83, 035116 (2011)CrossRefGoogle Scholar
  38. 38.
    Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005)CrossRefGoogle Scholar
  39. 39.
    Comini, E.: Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 568, 28–40 (2006)CrossRefGoogle Scholar
  40. 40.
    De Frésart, E., Darville, J., Gilles, J.M.: Surface properties of tin dioxide single crystals. Surf. Sci. 126, 518–522 (1983)CrossRefGoogle Scholar
  41. 41.
    Nagata, T., Bierwagen, O., White, M.E., Tsai, M.-Y., Speck, J.S.: Study of the Au Schottky contact formation on oxygen plasma treated n-type SnO2 (101) thin films. J. Appl. Phys. 107, 033707 (1–7) (2010)Google Scholar
  42. 42.
    Van de Walle, C.G., Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003)CrossRefGoogle Scholar
  43. 43.
    Cox, S.F.J., Davis, E.A., Cotrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilão, R.C., Piroto Duarte, J., Ayres de Campos, N., Weidinger, A., Lichti, R.L., Irvine, S.J.C.: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601–2604 (2001)CrossRefGoogle Scholar
  44. 44.
    King, P.D.C., McKenzie, I., Veal, T.D.: Observation of shallow-donor muonium in Ga2O3: Evidence for hydrogen-induced conductivity. Appl. Phys. Lett. 96, 062110 (2010)CrossRefGoogle Scholar
  45. 45.
    King, P.D.C., Lichti, R.L., Celebi, Y.G., Gil, J.M., Vilão, R.C., Alberto, H.V., Piroto Duarte, J., Payne, D.J., Egdell, R.G., McKenzie, I., McConville, C.F., Cox, S.F.J., Veal, T.D.: Shallow donor state of hydrogen in In2O3 and SnO2: Implications for conductivity in transparent conducting oxides. Phys. Rev. B 80, 081201(R) (1–4) (2009)CrossRefGoogle Scholar
  46. 46.
    Heine, V.: Theory of surface states. Phys. Rev. 138, A1689–A1696 (1965)CrossRefGoogle Scholar
  47. 47.
    Inkson, J.C.: Deep impurities in semiconductors. I. Evanescent states and complex band structure. J. Phys. C: Solid State Phys. 13, 369–381 (1980)CrossRefGoogle Scholar
  48. 48.
    Tersoff, J.: Schottky barriers and semiconductor band structures. Phys. Rev. B 32, 6968–6971 (1985)CrossRefGoogle Scholar
  49. 49.
    Mönch, W.: Electronic Properties of Semiconductor Interfaces. Springer, Berlin (2004)Google Scholar
  50. 50.
    Veal, T.D., King, P.D.C., Hatfield, S.A., Bailey, L.R., McConville, C.F., Martel, B., Moreno, J.C., Frayssinet, E., Semond, F., Zúñiga-Pérez, J.: Valence band offset of the ZnO/AlN heterojunction determined by x-ray photoemission spectroscopy. Appl. Phys. Lett. 93, 202108 (1–3) (2008)CrossRefGoogle Scholar
  51. 51.
    King, P.D.C., Veal, T.D., Jefferson, P.H., McConville, C.F., Wang, T., Parbrook, P.J., Lu, H., Schaff, W.J.: Valence band offset of InN/AlN heterojunctions measured by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 90, 132105 (1–3) (2007)Google Scholar
  52. 52.
    King, P.D.C., Veal, T.D., Kendrick, C.E., Bailey, L.R., Durbin, S.M., McConville, C.F.: InN/GaN valence band offset: High-resolution x-ray photoemission spectroscopy measurements. Phys. Rev. B 78, 033308 (1–3) (2008)CrossRefGoogle Scholar
  53. 53.
    Falabretti, B., Robertson, J.: Electronic structures and doping of SnO2, CuAlO2, and CuInO2. J. Appl. Phys. 102, 123703 (1–5) (2007)CrossRefGoogle Scholar
  54. 54.
    Schleife, A., Fuchs, F., Rödl, C., Furthmüller, J., Bechstedt, F.: Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94, 012104 (1–3) (2009)CrossRefGoogle Scholar
  55. 55.
    He, H., Orlando, R., Blanco, M.A., Pandey, R., Amzallag, E., Baraille, I., Rérat, M.: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123 (1–8) (2006)Google Scholar
  56. 56.
    King, P.D.C., Veal, T.D., Jefferson, P.H., Hatfield, S.A., Piper, L.F.J., McConville, C.F., Fuchs, F., Furthmüller, J., Bechstedt, F., Lu, H., Schaff, W.J.: Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors. Phys. Rev. B 77, 045316 (1–6) (2008)Google Scholar
  57. 57.
    Veal, T.D., McConville, C.F., Schaff, W.J. (eds.): Indium Nitride and Related Alloys. CRC Press, Boca Raton, Fl (2009)Google Scholar
  58. 58.
    King, P.D.C., Veal, T.D., McConville, C.F.: Unintentional conductivity of indium nitride: transport modelling and microscopic origins. J. Phys.: Condens. Matter 21, 174201 (1–7) (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • T. D. Veal
    • 1
  • P. D. C. King
    • 1
  • C. F. McConville
    • 1
  1. 1.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations