Advertisement

Oxide Nanostructures for Energy Storage

  • Yuan Yang
  • Jang Wook Choi
  • Yi Cui
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 149)

Abstract

Solving energy issues is one of the greatest challenges in the twenty-first century. Energy storage is critical as it plays an important role in almost every aspect of energy application. Batteries and electrochemical capacitors are the most widely used energy storage devices, such as in portable devices, power tools, electric vehicles, and smart grids. However, devices with better performance, such as higher energy density, longer cycle life, and faster charge/discharge rate, are still desired. Novel materials are crucial to achieve these goals. In view of this, nanostructured materials offer great promise because of the unusual properties from their small dimensions and the combination of bulk and surface properties to the overall behavior. In this chapter, the effect of nanostructures on various oxide materials in batteries/capacitors will be discussed. In general, nanostructured materials significantly enhance the power capability of both batteries and capacitors. Moreover, cycle life and energy density are also improved for many oxides, especially those with conversion reactions.

Notes

Acknowledgments

The authors acknowledge support from King Abdullah University of Science and Technology (KAUST) and Global Climate and Energy Project (GCEP) at Stanford University. Yuan Yang acknowledges support from Stanford Graduate Fellowship.

References

  1. 1.
    Manthiram, A., Murugan, A.V., Sarkar, A., Muraliganth, T.: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621–638 (2008)CrossRefGoogle Scholar
  2. 2.
    Bruce, P.G., Scrosati, B., Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)CrossRefGoogle Scholar
  3. 3.
    Linden, D., Reddy, T.B.: Handbook of Batteries. McGraw-Hill, New York (2001)Google Scholar
  4. 4.
    Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)CrossRefGoogle Scholar
  5. 5.
    Yoshio, M., Brodd, R.J., Kozawa, A.: Lithium-Ion Batteries: Science and Technology. Springer, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)CrossRefGoogle Scholar
  7. 7.
    Cheng, F., Tao, Z., Liang, J., Chen, J.: Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 20, 667–681 (2008)CrossRefGoogle Scholar
  8. 8.
    Morales, A.M., Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)CrossRefGoogle Scholar
  9. 9.
    Hu, J.T., Odom, T.W., Lieber, C.M.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999)CrossRefGoogle Scholar
  10. 10.
    Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F., Yan, Y.Q.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)CrossRefGoogle Scholar
  11. 11.
    Kong, X.Y., Ding, Y., Yang, R., Wang, Z.L.: Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 303, 1348–1351 (2004)CrossRefGoogle Scholar
  12. 12.
    Cho, K.S., Talapin, D.V., Gaschler, W., Murray, C.B.: Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005)CrossRefGoogle Scholar
  13. 13.
    Fan, J., Wang, T., Yu, C.Z., Tu, B., Jiang, Z.Y., Zhao, D.Y.: Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 16(16), 1432 (2004)CrossRefGoogle Scholar
  14. 14.
    Holland, B.T., Blanford, C.F., Do, T., Stein, A.: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11(3), 795–805 (1999)CrossRefGoogle Scholar
  15. 15.
    Luo, J.Y., Wang, Y.G., Xiong, H.M., Xia, Y.Y.: Ordered mesoporous spinel LiMn2O4by a soft-chemical process as a cathode material for lithium-ion batteries. Chem. Mater. 19, 4791–4795 (2007)CrossRefGoogle Scholar
  16. 16.
    Jiao, F., Bao, J.L., Hill, A.H., Bruce, P.G.: Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47(50), 9711–9716 (2008)CrossRefGoogle Scholar
  17. 17.
    Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRefGoogle Scholar
  18. 18.
    Cui, L.F., Ruffo, R., Chan, C.K., Peng, H.L., Cui, Y.: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9(1), 491–495 (2009)CrossRefGoogle Scholar
  19. 19.
    Han, J.M., Myung, S.T., Sun, Y.K.: Improved electrochemical cycling behavior of ZnO-coated Li1.05Al0.1Mn1.85O3.95F0.05 spinel at 55 degrees C. J. Electrochem. Soc. 153(7), A1290–A1295 (2006)CrossRefGoogle Scholar
  20. 20.
    Ohzuku, T., Takehara, Z., Yoshizawa, S.: Non-aqueous lithium-titanium dioxide cell. Electrochim. Acta 24(2), 219–222 (1979)CrossRefGoogle Scholar
  21. 21.
    Zheng, Z.S., Tang, Z.L., Zhang, Z.T., Shen, W.C.: Review of cathode material LiMn2O4 for lithium ion batteries. J. Inorg. Mater. 18(2), 257–263 (2003)Google Scholar
  22. 22.
    Dickens, P.G., Reynolds, G.J.: Transport and equilibrium properties of some oxide insertion compounds. Solid State Ion. 5, 331–334 (1981)CrossRefGoogle Scholar
  23. 23.
    Guyomard, D., Tarascon, J.M.: Li metal-free rechargeable LiMn2O4/carbon cells – their understanding and optimization. J. Electrochem. Soc. 139(4), 937–948 (1992)CrossRefGoogle Scholar
  24. 24.
    Kikkawa, S., Miyazaki, S., Koizumi, M.: Electrochemical aspects of the deintercalation of layered AMO2 compounds. J. Power Sources 14(1–3), 231–234 (1985)CrossRefGoogle Scholar
  25. 25.
    Thomas, M., Bruce, P.G., Goodenough, J.B.: AC impedance of the Li(1-X)CoO2 electrode. Solid State Ion. 18–19, 794–798 (1986)CrossRefGoogle Scholar
  26. 26.
    Cho, J.: VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. J. Mater. Chem. 18(19), 2257–2261 (2008)CrossRefGoogle Scholar
  27. 27.
    Kim, D.K., Muralidharan, P., Lee, H.W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H., Huggins, R.A., Cui, Y.: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8(11), 3948–3952 (2008)CrossRefGoogle Scholar
  28. 28.
    Luo, J.Y., Xiong, H.M., Xia, Y.Y.: LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. 112(31), 12051–12057 (2008)Google Scholar
  29. 29.
    Shaju, K.M., Bruce, P.G.: A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 20(17), 5557–5562 (2008)CrossRefGoogle Scholar
  30. 30.
    Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H.S.: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9(3), 1045–1051 (2009)CrossRefGoogle Scholar
  31. 31.
    Gummow, R.J., Dekock, A., Thackeray, M.M.: Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells. Solid State Ion. 69(1), 59–67 (1994)CrossRefGoogle Scholar
  32. 32.
    Amatucci, G., Tarascon, J.M.: Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries. J. Electrochem. Soc. 149(12), K31–K46 (2002)CrossRefGoogle Scholar
  33. 33.
    Thackeray, M.M., Shao-Horn, Y., Kahaian, A.J., Kepler, K.D., Vaughey, J.T., Hackney, S.A.: Structural fatigue in spinel electrodes in high voltage (4V) Li/LixMn2O4 cells. Electrochem. Solid State Lett. 1(1), 7–9 (1998)CrossRefGoogle Scholar
  34. 34.
    Xia, Y.Y., Zhou, Y.H., Yoshio, M.: Capacity fading on cycling of 4V Li/LiMn2O4 cells. J. Electrochem. Soc. 144(8), 2593–2600 (1997)CrossRefGoogle Scholar
  35. 35.
    Yoshio, M., Xia, Y.Y., Kumada, N., Ma, S.H.: Storage and cycling performance of Cr-modified spinel at elevated. J. Power Sources 101(1), 79–85 (2001)CrossRefGoogle Scholar
  36. 36.
    Chromik, R., Beck, F.: A quantitative discrimination between reversible Li+-insertion and irreversible solvent oxidation at a lithium/manganese-spinel electrode. Electrochim. Acta 45(14), 2175–2185 (2000)CrossRefGoogle Scholar
  37. 37.
    Gao, Y., Dahn, J.R.: Synthesis and characterization of Li1+xMn2-xO4 for Li-ion battery applications. J. Electrochem. Soc. 143(1), 100–114 (1996)CrossRefGoogle Scholar
  38. 38.
    Blyr, A., Sigala, C., Amatucci, G., Guyomard, D., Chabre, Y., Tarascon, J.M.: Self-discharge of LiMn2O4/C Li-ion cells in their discharged state – Understanding by means of three-electrode measurements. J. Electrochem. Soc. 145(1), 194–209 (1998)CrossRefGoogle Scholar
  39. 39.
    Kamarulzaman, N., et al.: Investigation of cell parameters, microstructures and electrochemical behaviour of LiMn2O4 normal and nano powders. J. Power Sources 188(1), 274–280 (2009)CrossRefGoogle Scholar
  40. 40.
    Peng, H.L., Xie, C., Schoen, D.T., Cui, Y.: Large anisotropy of electrical properties in layer-structured In2Se3 nanowires. Nano Lett. 8(5), 1511–1516 (2008)CrossRefGoogle Scholar
  41. 41.
    Meister, S., Schoen, D.T., Topinka, M.A., Minor, A.M., Cui, Y.: Void formation induced electrical switching in phase-change nanowires. Nano Lett. 8(12), 4562–4567 (2008)CrossRefGoogle Scholar
  42. 42.
    Duan, X.F., Lieber, C.M.: General synthesis of compound semiconductor nanowires. Adv. Mater. 12(4), 298–302 (2000)CrossRefGoogle Scholar
  43. 43.
    Lieber, C.M.: One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun. 107(11), 607–616 (1998)CrossRefGoogle Scholar
  44. 44.
    Yang, Y., Xie, C., Ruffo, R., Peng, H., Kim, D.K., Cui, Y.: Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett. 9(12), 4109–4114 (2009)CrossRefGoogle Scholar
  45. 45.
    Linden, D., Reddy, T.B.: Handbook of Batteries, pp. 14.55–14.71. McGraw-Hill, New York (2001)Google Scholar
  46. 46.
    Linden, D., Reddy, T.B.: Handbook of Batteries, pp. 34.8–34.12. McGraw-Hill, New York (2001)Google Scholar
  47. 47.
    Devaraj, S., Munichandraiah, N.: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. 112(11), 4406–4417 (2008)Google Scholar
  48. 48.
    Jiao, F., Bruce, P.G.: Mesoporous crystalline beta-MnO2 – a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19(5), 657 (2007)CrossRefGoogle Scholar
  49. 49.
    Cheng, F.Y., Zhao, J.Z., Song, W., Li, C.S., Ma, H., Chen, J., Shen, P.W.: Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45(5), 2038–2044 (2006)CrossRefGoogle Scholar
  50. 50.
    Ma, R.H., Bando, Y., Zhang, L.Q., Sasaki, T.: Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 16(11), 918–922 (2004)CrossRefGoogle Scholar
  51. 51.
    Xiong, Y.J., Xie, Y., Li, Z.Q., Wu, C.Z.: Growth of well-aligned gamma-MnO2 monocrystalline nanowires through a coordination-polymer-precursor route. Chem. Eur. J. 9(7), 1645–1651 (2003)CrossRefGoogle Scholar
  52. 52.
    Wang, X., Li, Y.D.: Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002)CrossRefGoogle Scholar
  53. 53.
    Wang, X., Li, Y.D.: Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 9(1), 300–306 (2003)CrossRefGoogle Scholar
  54. 54.
    Wu, C.Z., Xie, Y., Wang, D., Yang, J., Li, T.W.: Selected-control hydrothermal synthesis of gamma-MnO2 3D nanostructures. J. Phys. Chem. 107(49), 13583–13587 (2003)Google Scholar
  55. 55.
    Zhu, S.M., Zhou, H.A., Hibino, M., Honma, I., Ichihara, M.: Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 15(3), 381–386 (2005)CrossRefGoogle Scholar
  56. 56.
    Ammundsen, B., Paulsen, J.: Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 13(12–13), 943 (2001)CrossRefGoogle Scholar
  57. 57.
    Wang, L., Maxisch, T., Ceder, G.: A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007)CrossRefGoogle Scholar
  58. 58.
    Chabre, Y., Pannetier, J.: Structural and electrochemical properties of the proton gamma-MnO2 system. Prog. Solid State Chem. 23(1), 1–130 (1995)CrossRefGoogle Scholar
  59. 59.
    Chan, C.K., Peng, H.L., Twesten, R.D., Jarausch, K., Zhang, X.F., Cui, Y.: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7(2), 490–495 (2007)CrossRefGoogle Scholar
  60. 60.
    Delmas, C., Cognacauradou, H., Cocciantelli, J.M., Menetrier, M., Doumerc, J.P.: The LiXV2O5 system - an overview of the structure modifications induced by the lithium intercalation. Solid State Ion. 69(3–4), 257–264 (1994)CrossRefGoogle Scholar
  61. 61.
    Whittingham, M.S., Dines, M.B.: Normal-butyllithium – effective, general cathode screening agent. J. Electrochem. Soc. 124(9), 1387–1388 (1977)CrossRefGoogle Scholar
  62. 62.
    Patrissi, C.J., Martin, C.R.: Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J. Electrochem. Soc. 146(9), 3176–3180 (1999)CrossRefGoogle Scholar
  63. 63.
    Sakamoto, J.S., Dunn, B.: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J. Electrochem. Soc. 149(1), A26–A30 (2002)CrossRefGoogle Scholar
  64. 64.
    Yang, Z.G., Choi, D., Kerisit, S., Rosso, K.M., Wang, D.H., Zhang, J., Graff, G., Liu, J.: Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 192(2), 588–598 (2009)CrossRefGoogle Scholar
  65. 65.
    Cromer, D.T., Herrington, K.: The structures of anatase and rutile. J. Am. Chem. Soc. 77(18), 4708–4709 (1955)CrossRefGoogle Scholar
  66. 66.
    Banfield, J.F., Veblen, D.R.: Conversion of perovskite to anatase and TiO2 (B) – a TEM study and the use of fundamental building-blocks for understanding relationships among the TiO2 minerals. Am. Mineral. 77(5–6), 545–557 (1992)Google Scholar
  67. 67.
    Kavan, L., Gratzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J.: Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118(28), 6716–6723 (1996)CrossRefGoogle Scholar
  68. 68.
    Takai, S., Kamata, M., Fujine, S., Yoneda, K., Kanda, K., Esaka, T.: Diffusion coefficient measurement of lithium ion in sintered Li1.33Ti1.67O4 by means of neutron radiography. Solid State Ion. 123(1–4), 165–172 (1999)CrossRefGoogle Scholar
  69. 69.
    Koudraichova, M.V., Harrison, N.M., de Leeuw, S.W.: Diffusion of Li-ions in rutile. An ab initio study. Solid State Ion. 157(1–4), 35–38 (2003)CrossRefGoogle Scholar
  70. 70.
    Koudriachova, M.V., Harrison, N.M., de Leeuw, S.W.: Effect of diffusion on lithium intercalation in titanium dioxide. Phys. Rev. Lett. 86(7), 1275–1278 (2001)CrossRefGoogle Scholar
  71. 71.
    Stashans, A., Lunell, S., Bergstrom, R., Hagfeldt, A., Lindquist, S.E.: Theoretical study of lithium intercalation in rutile and anatase. Phys. Rev. 53(1), 159–170 (1996)CrossRefGoogle Scholar
  72. 72.
    Hu, Y.S., Kienle, L., Guo, Y.G., Maier, J.: High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18(11), 1421 (2006)CrossRefGoogle Scholar
  73. 73.
    Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.: TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid State Lett. 9(3), A139–A143 (2006)CrossRefGoogle Scholar
  74. 74.
    Armstrong, G., Armstrong, A.R., Bruce, P.G., Reale, P., Scrosati, B.: TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18(19), 2597–2600 (2006)CrossRefGoogle Scholar
  75. 75.
    Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.: Nanotubes with the TiO2-B structure. Chem. Commun. 19, 2454–2456 (2005)CrossRefGoogle Scholar
  76. 76.
    Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R., Bruce, P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17(7), 862 (2005)CrossRefGoogle Scholar
  77. 77.
    Taberna, L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.M.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5(7), 567–573 (2006)CrossRefGoogle Scholar
  78. 78.
    Li, N.C., Martin, C.R.: A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis. J. Electrochem. Soc. 148(2), A164–A170 (2001)CrossRefGoogle Scholar
  79. 79.
    Wang, H.B., Pan, Q.M., Cheng, Y.X., Zhao, J.W., Yin, G.P.: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 54(10), 2851–2855 (2009)CrossRefGoogle Scholar
  80. 80.
    Yan, G.F., Fang, H.S., Li, G.S., Li, L.P., Zhao, H.J., Yang, Y.: Improved Electrochemical Performance of Mg-doped ZnO Thin Film as Anode Material for Lithium Ion Batteries. Chin. J. Struct. Chem 28(4), 409–413 (2009)Google Scholar
  81. 81.
    Reddy, A.L.M., Shaijumon, M.M., Gowda, S.R., Ajayan, P.M.: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 9(3), 1002–1006 (2009)CrossRefGoogle Scholar
  82. 82.
    Li, H., Balaya, P., Maier, J.: Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151(11), A1878–A1885 (2004)CrossRefGoogle Scholar
  83. 83.
    Obrovac, M.N., Dahn, J.R.: Electrochemically active lithia/metal and lithium sulfide/metal composites. Electrochem. Solid State Lett. 5(4), A70–A73 (2002)CrossRefGoogle Scholar
  84. 84.
    Wang, Y., Lee, J.Y.: Molten salt synthesis of tin oxide nanorods: morphological and electrochemical features. J. Phys. Chem 108(46), 17832–17837 (2004)Google Scholar
  85. 85.
    Kim, C., Noh, M., Choi, M., Cho, J., Park, B.: Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 17(12), 3297–3301 (2005)CrossRefGoogle Scholar
  86. 86.
    Shi, Y., Guo, B., Corr, S.A., Shi, Q., Hu, Y.-S., Heier, K.R., Chen, L., Seshadri, R., Stucky, G.D.: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9(12), 4215–4220 (2009)CrossRefGoogle Scholar
  87. 87.
    Mitra, S., Poizot, P., Finke, A., Tarascon, J.M.: Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition. Adv. Funct. Mater. 16(17), 2281–2287 (2006)CrossRefGoogle Scholar
  88. 88.
    Lou, X.W., Wang, Y., Yuan, C.L., Lee, J.Y., Archer, L.A.: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006)CrossRefGoogle Scholar
  89. 89.
    Lee, K.T., Lytle, J.C., Ergang, N.S., Oh, S.M., Stein, A.: Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15(4), 547–556 (2005)CrossRefGoogle Scholar
  90. 90.
    Liu, Y., Dong, H., Liu, M.L.: Well-aligned “nano-box-beams” of SnO2. Adv. Mater. 16(4), 353 (2004)CrossRefGoogle Scholar
  91. 91.
    Wang, Y., Lee, J.Y., Zeng, H.C.: Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17(15), 3899–3903 (2005)CrossRefGoogle Scholar
  92. 92.
    Wang, Y., Zeng, H.C., Lee, J.Y.: Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645 (2006)CrossRefGoogle Scholar
  93. 93.
    Park, M.S., Wang, G.X., Kang, Y.M., Wexler, D., Dou, S.X., Liu, H.K.: Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46(5), 750–753 (2007)CrossRefGoogle Scholar
  94. 94.
    Liu, L.J., Wang, Z.X., Li, H., Chen, L.Q., Huang, X.J.: Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ion. 152, 341–346 (2002)CrossRefGoogle Scholar
  95. 95.
    Kosova, N., Devyatkina, E., Slobodyuk, A., Kaichev, V.: Surface chemistry study of LiCoO2 coated with alumina. Solid State Ion. 179(27–32), 1745–1749 (2008)CrossRefGoogle Scholar
  96. 96.
    Wang, Z.X., Liu, L.J., Chen, L.Q., Huang, X.J.: Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ion. 148(3–4), 335–342 (2002)CrossRefGoogle Scholar
  97. 97.
    Fey, G.T.K., Lu, C.Z., Huang, J.D., Kumar, T.P., Chang, Y.C.: Nanoparticulate coatings for enhanced cyclability of LiCoO2 cathodes. J. Power Sources 146(1–2), 65–70 (2005)CrossRefGoogle Scholar
  98. 98.
    Fey, G.T.K., Lu, C.Z., Kumar, T.P., Chang, Y.C.: TiO2 coating for long-cycling LiCoO2: A comparison of coating procedures. Sur. Coat. Technol. 199(1), 22–31 (2005)CrossRefGoogle Scholar
  99. 99.
    Zhao, H.L., Ling, G., Qiu, W.H., Zhang, X.H.: Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating. J. Power Sources 132(1–2), 195–200 (2004)CrossRefGoogle Scholar
  100. 100.
    Fang, T., Duh, J.G., Sheen, S.R.: LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries. Thin Solid Films 469, 361–365 (2004)CrossRefGoogle Scholar
  101. 101.
    Cho, J., Kim, C.S., Yoo, S.I.: Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2. Electrochem. Solid State Lett. 3(8), 362–365 (2000)CrossRefGoogle Scholar
  102. 102.
    Kim, Y.J., Cho, J.P., Kim, T.J., Park, B.: Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J. Electrochem. Soc. 150(12), A1723–A1725 (2003)CrossRefGoogle Scholar
  103. 103.
    Wang, L., Li, J.G., He, X.M., Pu, W.H., Wan, C.R., Jiang, C.Y.: Recent advances in layered LiNi (x) CoyMn1-x-y O-2 cathode materials for lithium ion batteries. J. Solid State Electrochem. 13(8), 1157–1164 (2009)CrossRefGoogle Scholar
  104. 104.
    Arunkumar, T.A., Wu, Y., Manthiram, A.: Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li/sub 1/3/Mn/sub 2/3/]O/sub 2/-Li[M]O/sub 2/(M = Mn/sub 0.5-y/Ni/sub 0.5-y/Co/sub 2y/and Ni/sub 1-y/Co/sub y/) solid solutions. Chem. Mater. 3067, 73 (2007)Google Scholar
  105. 105.
    Lu, Z.H., Beaulieu, L.Y., Donaberger, R.A., Thomas, C.L., Dahn, J.R.: Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O-2. J. Electrochem. Soc. 149(6), A778–A791 (2002)CrossRefGoogle Scholar
  106. 106.
    Wu, Y., Manthiram, A.: High capacity, surface-modified layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss. Electrochem. Solid State Lett. 9(5), A221–A224 (2006)CrossRefGoogle Scholar
  107. 107.
    Inoue, T., Sano, M.: An investigation of capacity fading of manganese spinels stored at elevated temperature. J. Electrochem. Soc. 145(11), 3704–3707 (1998)CrossRefGoogle Scholar
  108. 108.
    Wohlfahrt-Mehrens, M., Vogler, C., Garche, J.: Aging mechanisms of lithium cathode materials. J. Power Sources 127(1–2), 58–64 (2004)CrossRefGoogle Scholar
  109. 109.
    Nishiwaki, Y., Terada, Y., Nakai, I.: Study of capacity loss mechanism of lithium manganate cathode during electrochemical cycles at high temperature by in situ TXRF and XAFS analyses. Electrochemistry 71(3), 163–168 (2003)Google Scholar
  110. 110.
    Eftekhari, A.: Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4 cathode. Solid State Ion. 167(3–4), 237–242 (2004)CrossRefGoogle Scholar
  111. 111.
    Kannan, A.M., Manthiram, A.: Surface/chemically modified LiMn2O4 cathodes for lithium-ion batteries. Electrochem. Solid State Lett. 5(7), A167–A169 (2002)CrossRefGoogle Scholar
  112. 112.
    Lai, C.E., Ye, W.Y., Liu, H.Y., Wang, W.J.: Preparation of TiO2-coated LiMn2O4 by carrier transfer method. Ionics 15(3), 389–392 (2009)CrossRefGoogle Scholar
  113. 113.
    Lim, S., Cho, J.: PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem. Commun. 10(10), 1478–1481 (2008)CrossRefGoogle Scholar
  114. 114.
    Arumugam, D., Kalaignan, G.P.: Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries. J. Electroanal. Chem. 624(1–2), 197–204 (2008)CrossRefGoogle Scholar
  115. 115.
    Sun, Y.K., Hong, K.J., Prakash, J.: The effect of ZnO coating on electrochemical cycling behavior of spinel LiMn2O4 cathode materials at elevated temperature. J. Electrochem. Soc. 150(7), A970–A972 (2003)CrossRefGoogle Scholar
  116. 116.
    Liu, D.Q., Liu, X.Q., He, Z.Z.: Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4. J. Alloy. Compd. 436(1–2), 387–391 (2007)CrossRefGoogle Scholar
  117. 117.
    Ha, H.W., Yun, N.J., Kim, K.: Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim. Acta 52(9), 3236–3241 (2007)CrossRefGoogle Scholar
  118. 118.
    Park, S.C., Kim, Y.M., Kang, Y.M., Kim, K.T., Lee, P.S., Lee, J.Y.: Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2. J. Power Sources 103(1), 86–92 (2001)CrossRefGoogle Scholar
  119. 119.
    Park, S.C., Kim, Y.M., Han, S.C., Ahn, S., Ku, C.H., Lee, J.Y.: The elevated temperature performance of LiMn2O4 coated with LiNi1-XCoXO2 (X = 0.2 and 1). J. Power Sources 107(1), 42–47 (2002)CrossRefGoogle Scholar
  120. 120.
    Chang, H.H., Chang, C.C., Su, C.Y., Wu, H.C., Yang, M.H., Wu, N.L.: Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J. Power Sources 185(1), 466–472 (2008)CrossRefGoogle Scholar
  121. 121.
    Leon, B., Vicente, C.P., Tirado, J.L., Biensan, P., Tessier, C.: Optimized chemical stability and electrochemical performance of LiFePO4 composite materials obtained by ZnO coating. J. Electrochem. Soc. 155(3), A211–A216 (2008)CrossRefGoogle Scholar
  122. 122.
    Miller, J.R., Simon, P.: Materials science – electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008)CrossRefGoogle Scholar
  123. 123.
    Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer Academic/Plenum, New York (1999)Google Scholar
  124. 124.
    Qu, D.Y., Shi, H.: Studies of activated carbons used in double-layer capacitors. J. Power Sources 74(1), 99–107 (1998)CrossRefGoogle Scholar
  125. 125.
    Wang, D.W., Li, F., Liu, M., Lu, G.Q., Cheng, H.M.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47(2), 373–376 (2008)CrossRefGoogle Scholar
  126. 126.
    Balducci, A., Dugas, R., Taberna, P.L., Simon, P., Plee, D., Mastragostino, M., Passerini, S.: High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165(2), 922–927 (2007)CrossRefGoogle Scholar
  127. 127.
    Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006)CrossRefGoogle Scholar
  128. 128.
    Frackowiak, E., Beguin, F.: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001)CrossRefGoogle Scholar
  129. 129.
    Zheng, J.P., Cygan, P.J., Jow, T.R.: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142(8), 2699–2703 (1995)CrossRefGoogle Scholar
  130. 130.
    Hu, C.C., Wang, C.C.: Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J. Electrochem. Soc. 150(8), A1079–A1084 (2003)CrossRefGoogle Scholar
  131. 131.
    Chen, Z., Qin, Y.C., Weng, D., Xiao, Q.F., Peng, Y.T., Wang, X.L., Li, H.X., Wei, F., Lu, Y.F.: Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 19(21), 3420–3426 (2009)CrossRefGoogle Scholar
  132. 132.
    Zhang, H., Cao, G.P., Wang, Z.Y., Yang, Y.S., Shi, Z.J., Gu, Z.N.: Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8(9), 2664–2668 (2008)CrossRefGoogle Scholar
  133. 133.
    Zhang, Y.P., Sun, X.W., Pan, L.K., Li, H.B., Sun, Z., Sun, C.P., Tay, B.K.: Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors. Solid State Ion. 180(32–35), 1525–1528 (2009)CrossRefGoogle Scholar
  134. 134.
    Zhang, H., Cao, G.P., Yang, Y.S.: Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009)CrossRefGoogle Scholar
  135. 135.
    Galizzio, D., Tantardi, F., Trasatti, S.: Ruthenium dioxide – new electrode material. 1. Behavior in acid solutions of inert electrolytes. J. Appl. Electrochem. 4(1), 57–67 (1974)CrossRefGoogle Scholar
  136. 136.
    Hadzijordanov, S., Angersteinkozlowska, H., Conway, B.E.: Surface oxidation and H deposition at ruthenium electrodes – resolution of component processes in potential-sweep experiments. J. Electroanal. Chem. 60(3), 359–362 (1975)CrossRefGoogle Scholar
  137. 137.
    Hadzijordanov, S., Angersteinkozlowska, H., Vukovic, M., Conway, B.E.: Reversibility and growth-behavior of surface oxide-films at ruthenium electrodes. J. Electrochem. Soc. 125(9), 1471–1480 (1978)CrossRefGoogle Scholar
  138. 138.
    Trasatti, S., Buzzanca, G.: Ruthenium dioxide – new interesting electrode material – solid state structure and electrochemical behaviour. J. Electroanal. Chem. 29(2), A1 (1971)Google Scholar
  139. 139.
    Weston, J.E., Steele, B.C.H.: Proton diffusion in crystalline ruthenium dioxide. J. Appl. Electrochem. 10(1), 49–53 (1980)CrossRefGoogle Scholar
  140. 140.
    Arikado, T., Iwakura, C., Tamura, H.: Electrochemical behavior of ruthenium oxide electrode prepared by thermal-decomposition method. Electrochim. Acta 22(5), 513–518 (1977)CrossRefGoogle Scholar
  141. 141.
    Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., Long, J.W.: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7(2), 281–286 (2007)CrossRefGoogle Scholar
  142. 142.
    Jang, J.H., Han, S., Hyeon, T., Oh, S.M.: Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J. Power Sources 123(1), 79–85 (2003)CrossRefGoogle Scholar
  143. 143.
    Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y., Takasu, Y.: Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42(34), 4092–4096 (2003)CrossRefGoogle Scholar
  144. 144.
    Long, J.W., Swider, K.E., Merzbacher, C.I., Rolison, D.R.: Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials. Langmuir 15(3), 780–785 (1999)CrossRefGoogle Scholar
  145. 145.
    Shen, X.F., Ding, Y.S., Liu, J., Cai, J., Laubernds, K., Zerger, R.P., Vasiliev, A., Aindow, M., Suib, S.L.: Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials. Adv. Mater. 17(7), 805 (2005)CrossRefGoogle Scholar
  146. 146.
    Kim, J.K., Manthiram, A.: A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390(6657), 265–267 (1997)CrossRefGoogle Scholar
  147. 147.
    Shinomiya, T., Gupta, V., Miura, N.: Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide. Electrochim. Acta 51(21), 4412–4419 (2006)CrossRefGoogle Scholar
  148. 148.
    Cheng, J., Cao, G.P., Yang, Y.S.: Characterization of sol-gel-derived NiOx xerogels as supercapacitors. J. Power Sources 159(1), 734–741 (2006)CrossRefGoogle Scholar
  149. 149.
    Adelkhani, H., Ghaemi, M., Jafari, S.M.: Novel nanostructured MnO2 prepared by pulse electrodeposition: characterization and electrokinetics. J. Mater. Sci. Technol. 24(6), 857–862 (2008)Google Scholar
  150. 150.
    Yuan, J.K., Li, W.N., Gomez, S., Suib, S.L.: Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures. J. Am. Chem. Soc. 127(41), 14184–14185 (2005)CrossRefGoogle Scholar
  151. 151.
    Yin, M., O’Brien, S.: Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125(34), 10180–10181 (2003)CrossRefGoogle Scholar
  152. 152.
    Zhong, X.H., Xie, R.G., Sun, L.T., Lieberwirth, I., Knoll, W.: Synthesis of dumbbell-shaped manganese oxide nanocrystals. J. Phys. Chem. 110(1), 2–4 (2006)Google Scholar
  153. 153.
    Zhang, L.C., Liu, Z.H., Lv, H., Tang, X.H., Ooi, K.: Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. 111(24), 8418–8423 (2007)Google Scholar
  154. 154.
    Wu, M.S., Chiang, P.C.J., Lee, J.T., Lin, J.C.: Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. 109(49), 23279–23284 (2005)Google Scholar
  155. 155.
    Cheng, F.Y., Chen, J., Gou, X.L., Shen, P.W.: High-power alkaline Zn-MuO(2) batteries using gamma-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17(22), 2753 (2005)CrossRefGoogle Scholar
  156. 156.
    Subramanian, V., Zhu, H.W., Vajtai, R., Ajayan, P.M., Wei, B.Q.: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. 109(43), 20207–20214 (2005)Google Scholar
  157. 157.
    Oaki, Y., Imai, H.: One-pot synthesis of manganese oxide nanosheets in aqueous solution: Chelation-mediated parallel control of reaction and morphology. Angew. Chem. Int. Ed. 46(26), 4951–4955 (2007)CrossRefGoogle Scholar
  158. 158.
    Pang, S.C., Anderson, M.A., Chapman, T.W.: Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 147(2), 444–450 (2000)CrossRefGoogle Scholar
  159. 159.
    Hu, C.C., Tsou, T.W.: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun. 4(2), 105–109 (2002)CrossRefGoogle Scholar
  160. 160.
    Kim, H., Popov, B.N.: Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc. 150(3), D56–D62 (2003)CrossRefGoogle Scholar
  161. 161.
    Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H.D., Choi, J.W., Han, S.M., Cui, Y.: Stretchable, porous, and conductive energy textiles. Nano Lett. 10(2), 708–714 (2010)CrossRefGoogle Scholar
  162. 162.
    Toupin, M., Brousse, T., Belanger, D.: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mat. 16(16), 3184–3190 (2004)CrossRefGoogle Scholar
  163. 163.
    Lee, H.Y., Manivannan, V., Goodenough, J.B.: Electrochemical capacitors with KCl electrolyte. C R Acad. Sci. Ser. II C 2(11–13), 565–577 (1999)Google Scholar
  164. 164.
    Lee, H.Y., Goodenough, J.B.: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144(1), 220–223 (1999)CrossRefGoogle Scholar
  165. 165.
    Zhang, F.B., Zhou, Y.K., Li, H.L.: Nanocrystalline NiO as an electrode material for electrochemical capacitor. Mater. Chem. Phys. 83(2–3), 260–264 (2004)CrossRefGoogle Scholar
  166. 166.
    Srinivasan, V., Weidner, J.W.: Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration. J. Electrochem. Soc. 147(3), 880–885 (2000)CrossRefGoogle Scholar
  167. 167.
    Xing, W., Huang, C.C., Zhuo, S.P., Yuan, X., Wang, G.Q., Hulicova-Jurcakova, D., Yan, Z.F., Lu, G.Q.: Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47(7), 1715–1722 (2009)CrossRefGoogle Scholar
  168. 168.
    Srinivasan, V., Weidner, J.W.: An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc. 144(8), L210–L213 (1997)CrossRefGoogle Scholar
  169. 169.
    Lin, C., Ritter, J.A., Popov, B.N.: Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J. Electrochem. Soc. 145(12), 4097–4103 (1998)Google Scholar
  170. 170.
    Srinivasan, V., Weidner, J.W.: Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources 108(1–2), 15–20 (2002)CrossRefGoogle Scholar
  171. 171.
    Armelao, L., Barreca, D., Gross, S., Martucci, A., Tieto, M., Tondello, E.: Cobalt oxide-based films: sol-gel synthesis and characterization. J. Non Cryst. Solids 293, 477–482 (2001)CrossRefGoogle Scholar
  172. 172.
    Wang, Y., Yang, W.S., Zhang, S.C., Evans, D.G., Duan, X.: Synthesis and electrochemical characterization of Co-Al layered double hydroxides. J. Electrochem. Soc. 152(11), A2130–A2137 (2005)CrossRefGoogle Scholar
  173. 173.
    Chuang, P.Y., Hu, C.C.: The electrochemical characteristics of binary manganese-cobalt oxides prepared by anodic deposition. Mater. Chem. Phys. 92(1), 138–145 (2005)CrossRefGoogle Scholar
  174. 174.
    Prasad, K.R., Miura, N.: Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun. 6(10), 1004–1008 (2004)CrossRefGoogle Scholar
  175. 175.
    Hu, C.C., Cheng, C.Y.: Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition. Electrochem. Solid State Lett. 5(3), A43–A46 (2002)CrossRefGoogle Scholar
  176. 176.
    Wu, N.L.: Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75(1–3), 6–11 (2002)CrossRefGoogle Scholar
  177. 177.
    Broughton, J.N., Brett, M.J.: Investigation of thin sputtered Mn films for electrochemical capacitors. Electrochim. Acta 49(25), 4439–4446 (2004)CrossRefGoogle Scholar
  178. 178.
    Kim, I.H., Kim, J.H., Kim, K.B.: Electrochemical characterization of electrochemically prepared ruthenium oxide/carbon nanotube electrode for supercapacitor application. Electrochem. Solid State Lett. 8(7), A369–A372 (2005)CrossRefGoogle Scholar
  179. 179.
    Wu, Y.T., Hu, C.C.: Effects of electrochemical activation and multiwall carbon nanotubes on the capacitive characteristics of thick MnO2 deposits. J. Electrochem. Soc. 151(12), A2060–A2066 (2004)CrossRefGoogle Scholar
  180. 180.
    Hughes, M., Shaffer, M.S.P., Renouf, A.C., Singh, C., Chen, G.Z., Fray, J., Windle, A.H.: Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv. Mater. 14(5), 382–385 (2002)CrossRefGoogle Scholar
  181. 181.
    Lee, B.J., Sivakkumar, S.R., Ko, J.M., Kim, J.H., Jo, S.M., Kim, D.Y.: Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. J. Power Sources 168(2), 546–552 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations