Development of Bile Acids as Anti-Apoptotic and Neuroprotective Agents in Treatment of Ocular Disease

  • Stephanie L. Foster
  • Cristina Kendall
  • Allia K. Lindsay
  • Alison C. Ziesel
  • Rachael S. Allen
  • Sheree S. Mosley
  • Esther S. Kim
  • Ross J. Molinaro
  • Henry F. Edelhauser
  • Machelle T. Pardue
  • John M. Nickerson
  • Jeffrey H. Boatright
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 2)


The hydrophilic bile acids ursodeoxycholic acid and tauroursodeoxycholic acid are approved by regulatory bodies of many countries for treatment of gallstones and cirrhosis. Delivery is by oral administration and side effects are minimal. This chapter reviews evidence demonstrating that systemic treatment with the two compounds is protective in models of neuronal and retinal degeneration and injury. Variability in the regulation of circulating bile acids suggests a need to explore local delivery as a treatment modality. Our initial experiments testing in vivo intraocular injections and in vitro transscleral permeability indicate that this is feasible and efficacious.


Bile Acid Primary Biliary Cirrhosis Cerebral Spinal Fluid Retinal Degeneration Outer Nuclear Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Original work presented here was supported in part by The Abraham J. and Phyllis Katz Foundation, the Foundation Fighting Blindness (FFB), Research to Prevent Blindness (RPB), and NIH NEI grants R01EY014026, R01EY016470, R24EY017045, P30EY006360, and T32EY007092.


  1. Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM (2009) Bile acids: regulation of apoptosis by ursodeoxycholic ccid. J Lipid Res 50:1721–1734PubMedCrossRefGoogle Scholar
  2. Arenas F, Hervias I, Uriz M, Joplin R, Prieto J, Medina JF (2008) Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells. J Clin Investig 118:695–709PubMedGoogle Scholar
  3. Arora SK, Faulkner A, Kim M, Ciavatta V, Pardue M (2009) Tudca preserves cones in fast degenerating Rd1 mice. Invest Ophthalmol Vis Sci 50:E-Abstract 978Google Scholar
  4. Batta AK, Arora R, Salen G, Tint GS, Eskreis D, Katz S (1989) Characterization of serum and urinary bile acids in patients with primary biliary cirrhosis by gas-liquid chromatography-mass spectrometry: effect of ursodeoxycholic acid treatment. J Lipid Res 30:1953–1962PubMedGoogle Scholar
  5. Batta AK, Salen G, Mirchandani R, Tint GS, Shefer S, Batta M, Abroon J, O’Brien CB, Senior JR (1993) Effect of long-term treatment with ursodiol on clinical and biochemical features and biliary bile acid metabolism in patients with primary biliary cirrhosis. Am J Gastroenterol 88:691–700PubMedGoogle Scholar
  6. Boatright JH, Boyd AP, Sidney SS, Minear SC, Stewart RE, Chaudhury R, Ciavatta VT (2006a) Effect of tauroursodeoxycholic acid on light-induced retinal degeneration. ARVO Meet Abstr 47:4835Google Scholar
  7. Boatright JH, Moring AG, McElroy C, Phillips MJ, Do VT, Chang B, Hawes NL, Boyd AP, Sidney SS, Stewart RE, Minear SC, Chaudhury R, Ciavatta VT, Rodrigues CM, Steer CJ, Nickerson JM, Pardue MT (2006b) Tool from ancient pharmacopoeia prevents vision loss. Mol Vis 12:1706–1714PubMedGoogle Scholar
  8. Boatright JH, Nickerson JM, Moring AG, Pardue MT (2009a) Bile acids in treatment of ocular disease. J Ocul Biol Dis Infor 2:149–159PubMedCrossRefGoogle Scholar
  9. Boatright JH, Sidney SS, Kim ES, Nickerson JM, Edelhauser HF (2009b) Transscleral permeability of tauroursodeoxycholic acid. ARVO Meet Abstr 50:5958Google Scholar
  10. Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB (1990) Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347:677–680PubMedCrossRefGoogle Scholar
  11. Castro RE, Sola S, Ramalho RM, Steer CJ, Rodrigues CM (2004) The bile acid tauroursodeoxycholic acid modulates phosphorylation and translocation of bad via phosphatidylinositol 3-kinase in glutamate-induced apoptosis of rat cortical neurons. J Pharmacol Exp Ther 311:845–852PubMedCrossRefGoogle Scholar
  12. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vis Res 42:517–525PubMedCrossRefGoogle Scholar
  13. Chang B, Hawes NL, Pardue MT, German AM, Hurd RE, Davisson MT, Nusinowitz S, Rengarajan K, Boyd AP, Sidney SS, Phillips MJ, Stewart RE, Chaudhury R, Nickerson JM, Heckenlively JR, Boatright JH (2007) Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vis Res 47:624–633PubMedCrossRefGoogle Scholar
  14. Chen L, Dentchev T, Wong R, Hahn P, Wen R, Bennett J, Dunaief JL (2003) Increased expression of ceruloplasmin in the retina following photic injury. Mol Vis 9:151–158PubMedGoogle Scholar
  15. Colak A, Kelten B, Sagmanligil A, Akdemir O, Karaoglan A, Sahan E, Celik O, Barut S (2008) Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats. J Clin Neurosci 15:665–671PubMedCrossRefGoogle Scholar
  16. Crosignani A, Battezzati PM, Setchell KD, Invernizzi P, Covini G, Zuin M, Podda M (1996) Tauroursodeoxycholic acid for treatment of primary biliary cirrhosis. A dose-response study. Dig Dis Sci 41:809–815PubMedCrossRefGoogle Scholar
  17. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548PubMedCrossRefGoogle Scholar
  18. Do VT, Nickerson JM, Boatright JH (2003) Prevention of apoptosis in an RPE carcinoma cell line by bile acids. ARVO Meet Abstr 44:4550Google Scholar
  19. Duan WM, Rodrigues CM, Zhao LR, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant 11:195–205PubMedGoogle Scholar
  20. Fedorowski T, Salen G, Calallilo A, Tint GS, Mosbach EH, Hall JC (1977) Metabolism of ursodeoxycholic acid in man. Gastroenterology 73:1131–1137PubMedGoogle Scholar
  21. Fernandez-Sanchez L, Pinilla I, Campello L, Idiope M, Martin-Nieto J, Cuenca N (2008) Tauroursodeoxycholic acid (TUDCA) slows retinal degeneration in transgenic P23H rats. Invest Ophthalmol Vis Sci 49:E-Abstract 2195Google Scholar
  22. Fernandez-Sanchez L, Lax P, Esquiva G, Pinilla I, Martín-Niet J, Cuenca N (2009) Loss of synaptic contacts in the retina is prevented by tauroursodeoxycholic acid (TUDCA) in transgenic P23H rats. Invest Ophthalmol Vis Sci 50:E-Abstract 980Google Scholar
  23. Foster SL, Ziesel AC, Kendall C, Boatright JH (2009) Of mice and men: the search for polymorphisms in the SLCO1b2 gene. In: SURE program, Emory University, Atlanta, GA, p 20Google Scholar
  24. Gargini C, Terzibasi E, Mazzoni F, Strettoi E (2007) Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol 500:222–238PubMedCrossRefGoogle Scholar
  25. German Moring AJ, Nickerson JM, Boatright JH (2003) Protective effects of tauroursodeoxycholic acid against oxidative damage in human retinoblastoma cells. ARVO Meet Abstr 44:4551Google Scholar
  26. Hofmann AF (1994) Pharmacology of ursodeoxycholic acid, an enterohepatic drug. Scand J Gastroenterol 204:1–15CrossRefGoogle Scholar
  27. Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159:2647–2658PubMedCrossRefGoogle Scholar
  28. Invernizzi P, Setchell KD, Crosignani A, Battezzati PM, Larghi A, O’Connell NC, Podda M (1999) Differences in the metabolism and disposition of ursodeoxycholic acid and of its taurine-conjugated species in patients with primary biliary cirrhosis. Hepatology 29:320–327PubMedCrossRefGoogle Scholar
  29. Joo SS, Won TJ, Lee DI (2004) Potential role of ursodeoxycholic acid in suppression of nuclear factor kappa B in microglial cell line (BV-2). Arch Pharm Res 27:954–960PubMedCrossRefGoogle Scholar
  30. Keene CD, Rodrigues CM, Eich T, Linehan-Stieers C, Abt A, Kren BT, Steer CJ, Low WC (2001) A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp Neurol 171:351–360PubMedCrossRefGoogle Scholar
  31. Kendall C, Premji SM, Stewart RE, Stewart RA, Boatright JH (2008) Ocular delivery of TUDCA provides neuroprotection in a mouse model of retinal degeneration. ARVO Meet Abstr 49:4932Google Scholar
  32. Koga H, Sakisaka S, Ohishi M, Sata M, Tanikawa K (1997) Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis. Hepatology 25:1077–1084PubMedCrossRefGoogle Scholar
  33. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506PubMedCrossRefGoogle Scholar
  34. Mulhern ML, Madson CJ, Thoreson W, Shinohara T (2008) Chemical chaperones and TUDCA partially suppress degeneration of retinal photoreceptor cells in transgenic mutant rhodopsin S334ter-3 rats. Invest Ophthalmol Vis Sci 49:E-Abstract 2038Google Scholar
  35. Nakagawa M, Colombo C, Setchell KD (1990) Comprehensive study of the biliary bile acid composition of patients with cystic fibrosis and associated liver disease before and after UDCA administration. Hepatology 12:322–334PubMedCrossRefGoogle Scholar
  36. Oka H, Toda G, Ikeda Y, Hashimoto N, Hasumura Y, Kamimura T, Ohta Y, Tsuji T, Hattori N, Namihisa T et al (1990) A multi-center double-blind controlled trial of ursodeoxycholic acid for primary biliary cirrhosis. Gastroenterol Jpn 25:774–780PubMedGoogle Scholar
  37. Oveson BC, Iwase T, Hackett SF, Lee SY, Usui S, Sedlak TW, Snyder SH, Campochiaro PA, Sung JU (2011) Constituents of bile, bilirubin and TUDCA, protect against oxidative stress-induced retinal degeneration. J Neurochem 116:144–153PubMedCrossRefGoogle Scholar
  38. Park IH, Kim MK, Kim SU (2008) Ursodeoxycholic acid prevents apoptosis of mouse sensory neurons induced by cisplatin by reducing P53 accumulation. Biochem Biophys Res Commun 377:1025–1030PubMedCrossRefGoogle Scholar
  39. Parquet M, Metman EH, Raizman A, Rambaud JC, Berthaux N, Infante R (1985) Bioavailability, gastrointestinal transit, solubilization and faecal excretion of ursodeoxycholic acid in man. Eur J Clin Investig 15:171–178CrossRefGoogle Scholar
  40. Parry GJ, Rodrigues CM, Aranha MM, Hilbert SJ, Davey C, Kelkar P, Low WC, Steer CJ (2010) Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol 33:17–21PubMedCrossRefGoogle Scholar
  41. Paumgartner G, Beuers U (2002) Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36:525–531PubMedCrossRefGoogle Scholar
  42. Phillips MJ, Walker TA, Choi HY, Faulkner AE, Kim MK, Sidney SS, Boyd AP, Nickerson JM, Boatright JH, Pardue MT (2008) Tauroursodeoxycholic acid preservation of photoreceptor structure and function in the rd10 mouse through postnatal day 30. Investig Ophthalmol Vis Sci 49:2148–2155CrossRefGoogle Scholar
  43. Ramalho RM, Borralho PM, Castro RE, Sola S, Steer CJ, Rodrigues CM (2006) Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer’s disease mutant neuroblastoma cells. J Neurochem 98:1610–1618PubMedCrossRefGoogle Scholar
  44. Ramalho RM, Viana RJ, Castro RE, Steer CJ, Low WC, Rodrigues CM (2008a) Apoptosis in transgenic mice expressing the P301L mutated form of human tau. Mol Med 14:309–317PubMedCrossRefGoogle Scholar
  45. Ramalho RM, Viana RJ, Low WC, Steer CJ, Rodrigues CM (2008b) Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer’s disease. Trends Mol Med 14:54–62PubMedCrossRefGoogle Scholar
  46. Reme CE, Grimm C, Hafezi F, Marti A, Wenzel A (1998) Apoptotic cell death in retinal degenerations. Prog Retin Eye Res 17:443–464PubMedCrossRefGoogle Scholar
  47. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4:165–178PubMedCrossRefGoogle Scholar
  48. Rodrigues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ 6:842–854PubMedCrossRefGoogle Scholar
  49. Rodrigues CM, Stieers CL, Keene CD, Ma X, Kren BT, Low WC, Steer CJ (2000) Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition. J Neurochem 75:2368–2379PubMedCrossRefGoogle Scholar
  50. Rodrigues CM, Sola S, Brito MA, Brondino CD, Brites D, Moura JJ (2001) Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate. Biochem Biophys Res Commun 281:468–474PubMedCrossRefGoogle Scholar
  51. Rodrigues CM, Spellman SR, Sola S, Grande AW, Linehan-Stieers C, Low WC, Steer CJ (2002) Neuroprotection by a bile acid in an acute stroke model in the rat. J Cereb Blood Flow Metab 22:463–471PubMedCrossRefGoogle Scholar
  52. Rodrigues CM, Sola S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003a) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci USA 100:6087–6092PubMedCrossRefGoogle Scholar
  53. Rodrigues CM, Sola S, Sharpe JC, Moura JJ, Steer CJ (2003b) Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome C release in isolated mitochondria. Biochemistry 42:3070–3080PubMedCrossRefGoogle Scholar
  54. Rubin RA, Kowalski TE, Khandelwal M, Malet PF (1994) Ursodiol for hepatobiliary disorders. Ann Intern Med 121:207–218PubMedGoogle Scholar
  55. Setchell KD, Rodrigues CM, Podda M, Crosignani A (1996) Metabolism of orally administered tauroursodeoxycholic acid in patients with primary biliary cirrhosis. Gut 38:439–446PubMedCrossRefGoogle Scholar
  56. Sola S, Castro RE, Laires PA, Steer CJ, Rodrigues CM (2003) Tauroursodeoxycholic acid prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. Mol Med 9:226–234PubMedCrossRefGoogle Scholar
  57. Sola S, Aranha MM, Steer CJ, Rodrigues CM (2007) Game and players: mitochondrial apoptosis and the therapeutic potential of ursodeoxycholic acid. Curr Issues Mol Biol 9:123–138PubMedGoogle Scholar
  58. Steinberg RH, Flannery JG, Naash M, Oh P, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, LaVail MM (1996) Transgenic rat models of inherited retinal degeneration caused by mutant opsin genes. Investig Ophthalmol Vis Sci 37:S698Google Scholar
  59. Stiehl A, Rudolph G, Raedsch R, Moller B, Hopf U, Lotterer E, Bircher J, Folsch U, Klaus J, Endele R et al (1990) Ursodeoxycholic acid-induced changes of plasma and urinary bile acids in patients with primary biliary cirrhosis. Hepatology 12:492–497PubMedCrossRefGoogle Scholar
  60. Tint GS, Salen G, Colalillo A, Graber D, Verga D, Speck J, Shefer S (1982) Ursodeoxycholic acid: a safe and effective agent for dissolving cholesterol gallstones. Ann Intern Med 97:351–356PubMedGoogle Scholar
  61. van de Steeg E, Wagenaar E, van der Kruijssen CM, Burggraaff JE, de Waart DR, Elferink RP, Kenworthy KE, Schinkel AH (2010) Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Investig 120:2942–2952PubMedCrossRefGoogle Scholar
  62. Viana RJ, Nunes AF, Castro RE, Ramalho RM, Meyerson J, Fossati S, Ghiso J, Rostagno A, Rodrigues CM (2009) Tauroursodeoxycholic acid prevents E22Q Alzheimer’s Abeta toxicity in human cerebral endothelial cells. Cell Mol Life Sci 66:1094–1104PubMedCrossRefGoogle Scholar
  63. Walker S, Rudolph G, Raedsch R, Stiehl A (1992) Intestinal absorption of ursodeoxycholic acid in patients with extrahepatic biliary obstruction and bile drainage. Gastroenterology 102:810–815PubMedGoogle Scholar
  64. Weitzel C, Stark D, Kullmann F, Scholmerich J, Holstege A, Falk W (2005) Ursodeoxycholic acid induced activation of the glucocorticoid receptor in primary rat hepatocytes. Eur J Gastroenterol Hepatol 17:169–177PubMedCrossRefGoogle Scholar
  65. Woo SJ, Kim JH, Yu HG (2010) Ursodeoxycholic acid and tauroursodeoxycholic acid suppress choroidal neovascularization in a laser-treated rat model. J Ocul Pharmacol Ther 26:223–229PubMedCrossRefGoogle Scholar
  66. Xiang X, Han Y, Neuvonen M, Pasanen MK, Kalliokoski A, Backman JT, Laitila J, Neuvonen PJ, Niemi M (2009) Effect of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in humans. Pharmacogenet Genomics 19:447–457PubMedCrossRefGoogle Scholar
  67. Yang ES, Kendall C, Premji SM, Boatright JH (2008) Tauroursodeoxycholic acid (TUDCA) prevents loss of visual function in rats. Invest Ophthalmol Vis Sci 49:E-Abstract 4933Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2011

Authors and Affiliations

  • Stephanie L. Foster
    • 1
  • Cristina Kendall
    • 1
  • Allia K. Lindsay
    • 1
  • Alison C. Ziesel
    • 1
    • 2
  • Rachael S. Allen
    • 1
  • Sheree S. Mosley
    • 1
  • Esther S. Kim
    • 1
  • Ross J. Molinaro
    • 3
  • Henry F. Edelhauser
    • 4
  • Machelle T. Pardue
    • 5
  • John M. Nickerson
    • 6
  • Jeffrey H. Boatright
    • 7
  1. 1.Department of OphthalmologyEmory University School of MedicineAtlantaUSA
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaUSA
  4. 4.Emory University Eye CenterEmory UniversityAtlantaUSA
  5. 5.Department of Ophthalmology and Rehabilitation Research and Development Center of Excellence, Atlanta VA Medical CenterEmory University School of MedicineAtlantaUSA
  6. 6.Department of OphthalmologyEmory UniversityAtlantaUSA
  7. 7.Department of OphthalmologyEmory University School of MedicineAtlantaUSA

Personalised recommendations