Hydrogels for Ocular Posterior Segment Drug Delivery

  • Gauri P. Misra
  • Thomas W. Gardner
  • Tao L. Lowe
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 2)


This chapter discusses emerging hydrogel technology for drug delivery to the back of the eye to treat retinal diseases. The review includes design, characterization and optimization of hydrogels, and advantages and disadvantages of intravitreally and subconjunctivally administrated hydrogels for retinal therapy. Future direction of hydrogel technology for targeted and sustained delivery of drugs to the retina for individualized medicine is also laid out.


Diabetic Macular Edema Retinal Vein Occlusion PLGA Microsphere Retinal Pigment Epithelium Drug Release Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the NIH, JDRF and Coulter Foundation grants. TWG is the Jack and Nancy Turner Professor.


  1. Al-Kassas RS, El-Khatib MM (2009) Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Drug Deliv 16:145–152PubMedCrossRefGoogle Scholar
  2. Allergan (2009) Allergan receives FDA approval forOZURDEX™ biodegradable, injectable steroid implant with extended drug release for retinal disease. Accessed 4 July 2011
  3. Alvarez-Lorenzo C, Hiratani H, Gómez-Amoza J et al (2002) Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci 91:2182–2192PubMedCrossRefGoogle Scholar
  4. Ambati J, Adamis AP (2002) Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res 21:145–151PubMedCrossRefGoogle Scholar
  5. Ambati J, Gragoudas ES, Miller JW et al (2000) Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 41:1186–1191PubMedGoogle Scholar
  6. Amrite AC, Kompella UB (2005) Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 57:1555–1563PubMedCrossRefGoogle Scholar
  7. Andrade-Vivero P, Fernandez-Gabriel E, Alvarez-Lorenzo C et al (2007) Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers. J Pharm Sci 96:802–813PubMedCrossRefGoogle Scholar
  8. Ayalasomayajula SP, Kompella UB (2004a) Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration. Pharm Res 21:1797–1804PubMedCrossRefGoogle Scholar
  9. Ayalasomayajula SP, Kompella UB (2004b) Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced retinal oxidative stress. Invest Ophthalmol Vis Sci 45:U342CrossRefGoogle Scholar
  10. Ayalasomayajula SP, Kompella UB (2005) Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol 511:191–198PubMedCrossRefGoogle Scholar
  11. Ballios BG, Cooke MJ, van der Kooy D et al (2010) A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 31:2555–2564PubMedCrossRefGoogle Scholar
  12. Bourges JL, Bloquel C, Thomas A et al (2006) Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev 58:1182–1202PubMedCrossRefGoogle Scholar
  13. Cao Y, Zhang C, Shen W et al (2007) Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 120:186–194PubMedCrossRefGoogle Scholar
  14. Carcaboso AM, Chiappetta DA, Opezzo JA et al (2010) Episcleral implants for topotecan delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci 51:2126–2134PubMedCrossRefGoogle Scholar
  15. Cheruvu NPS, Amrite AC, Kompella UB (2008) Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci 49:333–341PubMedCrossRefGoogle Scholar
  16. Chirila T, Thompson D, Constable I (1992) In vitro cytotoxicity of melanized poly(2-hydroxyethyl methacrylate) hydrogels, a novel class of ocular biomaterials. J Biomater Sci Polym Ed 3:481–498PubMedCrossRefGoogle Scholar
  17. Choonara YE, Pillay V, Danckwerts MP et al (2010) A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 99:2219–2239PubMedCrossRefGoogle Scholar
  18. Dai CY, Wang BC, Zhao HW (2005) Microencapsulation peptide and protein drugs delivery system. Colloids Surf B 41:117–120CrossRefGoogle Scholar
  19. Debbasch C, De La Salle S, Brignole F et al (2002) Cytoprotective effects of hyaluronic acid and carbomer 934P in ocular surface epithelial cells. Invest Ophthalmol Vis Sci 43:3409–3415PubMedGoogle Scholar
  20. Duvvuri S, Janoria KG, Pal D et al (2007) Controlled delivery of ganciclovir to the retina with drug-loaded poly(D, L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther 23:264–274PubMedCrossRefGoogle Scholar
  21. Eljarrat-Binstock E, Raiskup F, Frucht-Pery J et al (2005) Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release 106:386–390PubMedCrossRefGoogle Scholar
  22. Eljarrat-Binstock E, Domb AJ, Orucov F et al (2007) Methotrexate delivery to the eye using transscleral hydrogel iontophoresis. Curr Eye Res 32:639–646PubMedCrossRefGoogle Scholar
  23. Eljarrat-Binstock E, Domb AJ, Orucov F et al (2008a) In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis. Curr Eye Res 33:269–275PubMedCrossRefGoogle Scholar
  24. Eljarrat-Binstock E, Orucov F, Frucht-Pery J et al (2008b) Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther 24:344–350PubMedCrossRefGoogle Scholar
  25. Eljarrat-Binstock E, Pe’er J, Domb AJ (2010) New techniques for drug delivery to the posterior eye segment. Pharm Res 27:530–543PubMedCrossRefGoogle Scholar
  26. Gao Y, Sun Y, Ren F et al (2010) PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm 36(10):1131–1138PubMedCrossRefGoogle Scholar
  27. Gaudana R, Ananthula H, Parenky A et al (2010) Ocular drug delivery. AAPS J 12(3):348–360PubMedCrossRefGoogle Scholar
  28. Gilhotra RM, Mishra DN (2008) Alginate-chitosan film for ocular drug delivery: effect of surface cross-linking on film properties and characterization. Pharmazie 63:576–579PubMedGoogle Scholar
  29. Gorle AP, Gattani SG (2010) Development and evaluation of ocular drug delivery system. Pharm Dev Technol 15:46–52PubMedCrossRefGoogle Scholar
  30. Gukasyan HJ, Kim K-J, Lee VHL (2007) The conjunctival barrier in ocular drug delivery. In: Ehrhardt C, Kim KJ (eds) Drug absorption studies. Springer, New YorkGoogle Scholar
  31. Hironaka K, Inokuchi Y, Tozuka Y et al (2009) Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 136:247–253PubMedCrossRefGoogle Scholar
  32. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12PubMedCrossRefGoogle Scholar
  33. Huang X, Lowe TL (2005) Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules 6:2131–2139PubMedCrossRefGoogle Scholar
  34. Huang Y, Leobandung W, Foss A et al (2000) Molecular aspects of muco- and bioadhesion: tethered structures and site-specific surfaces. J Control Release 65:63–71PubMedCrossRefGoogle Scholar
  35. Huang X, Nayak BR, Lowe TL (2004) Synthesis and characterization of novel thermoresponsive-co-biodegradable hydrogels composed of N-isopropylacrylamide, poly(L-lactic acid), and dextran. J Polym Sci A Polym Chem 42:5054–5066CrossRefGoogle Scholar
  36. Hughes PM, Olejnik O, Chang-Lin JE et al (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57:2010–2032PubMedCrossRefGoogle Scholar
  37. Jaffe GJ, Martin D, Callanan D et al (2006) Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis – thirty-four-week results of a multicenter randomized clinical study. Ophthalmology 113:1020–1027PubMedCrossRefGoogle Scholar
  38. Janoria KG, Gunda S, Boddu SHS et al (2007) Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4:371–388PubMedCrossRefGoogle Scholar
  39. Kang Derwent J, Mieler W (2008) Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc 106:206–213PubMedGoogle Scholar
  40. Kang DJ, Mieler W (2008) Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc 106:206–213Google Scholar
  41. Khattak S, Spatara M, Roberts L et al (2006) Application of colorimetric assays to assess viability, growth and metabolism of hydrogel-encapsulated cells. Biotechnol Lett 28:1361–1370PubMedCrossRefGoogle Scholar
  42. Kim TW, Lindsey JD, Aihara M et al (2002) Intraocular distribution of 70-kDa dextran after subconjunctival injection in mice. Invest Ophthalmol Vis Sci 43:1809–1816PubMedGoogle Scholar
  43. Kompella UB, Bandi N, Ayalasomayajula SP (2003) Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 44:1192–1201PubMedCrossRefGoogle Scholar
  44. Kumar S, Haglund BO, Himmelstein KJ (1994) In situ-forming gels for ophthalmic drug delivery. J Ocul Pharmacol Ther 10:47–56CrossRefGoogle Scholar
  45. Kuno N, Fujii S (2010) Biodegradable intraocular therapies for retinal disorders progress to date. Drugs Aging 27:117–134PubMedCrossRefGoogle Scholar
  46. Lai JY, Ma DHK, Cheng HY et al (2010) Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers. J Biomater Sci Polym Ed 21:359–376PubMedCrossRefGoogle Scholar
  47. Lee SS, Robinson MR (2009) Novel drug delivery systems for retinal diseases: a review. Ophthalmic Res 41:124–135PubMedCrossRefGoogle Scholar
  48. Lin C, Metters A (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408PubMedCrossRefGoogle Scholar
  49. Liu Q, Hedberg E, Liu Z et al (2000) Preparation of macroporous poly(2-hydroxyethyl methacrylate) hydrogels by enhanced phase separation. Biomaterials 21:2163–2169PubMedCrossRefGoogle Scholar
  50. Liu Z, Li J, Nie S et al (2006) Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 315:12–17PubMedCrossRefGoogle Scholar
  51. Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639PubMedCrossRefGoogle Scholar
  52. Luo Y, Kirker K, Prestwich G (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184PubMedCrossRefGoogle Scholar
  53. Luprano V, Ramires P, Montagna G et al (1997) Non-destructive characterization of hydrogels. J Mater Sci Mater Med 8:175–178PubMedCrossRefGoogle Scholar
  54. Mac Gabhann F, Demetriades AM, Deering T et al (2007) Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann Biomed Eng 35:615–630PubMedCrossRefGoogle Scholar
  55. Maia J, Ferreira L, Carvalho R et al (2005) Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer 46:9604–9614CrossRefGoogle Scholar
  56. Mishra P, Dadsetan M, Rajagopalan S et al (2007) Using magnetic resonance microscopy to assess the osteogenesis in porous hydrogels. Mater Res Soc Symp Proc 984:33–38Google Scholar
  57. Misra G, Singh R, Aleman T et al (2009) Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 30:6541–6547PubMedCrossRefGoogle Scholar
  58. Moriyama K, Yui N (1996) Regulated insulin release from biodegradable dextran hydrogels containing poly(ethylene glycol). J Control Release 42:237–248CrossRefGoogle Scholar
  59. Mundada AS, Avari JG (2009) In situ gelling polymers in ocular drug delivery systems: a review. Crit Rev Ther Drug Carrier Syst 26:85–118PubMedGoogle Scholar
  60. Murakami Y, Maeda M (2005) DNA-responsive hydrogels that can shrink or swell. Biomacro­molecules 6:2927–2929PubMedCrossRefGoogle Scholar
  61. Myles ME, Neumann DM, Hill JM (2005) Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev 57:2063–2079PubMedCrossRefGoogle Scholar
  62. Nanjawade BK, Manvi FV, Manjappa AS (2007) In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release 122:119–134PubMedCrossRefGoogle Scholar
  63. Pal K, Banthia A, Majumdar D (2008) Effect of heat treatment of starch on the properties of the starch hydrogels. Mater Lett 62:215–218CrossRefGoogle Scholar
  64. Park H, Robinson JR (1987) Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res 4:457–464PubMedCrossRefGoogle Scholar
  65. Peppas N, Mongia N (1997) Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur J Pharm Biopharm 43:51–58CrossRefGoogle Scholar
  66. Peppas NA, Bures P, Leobandung W et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46PubMedCrossRefGoogle Scholar
  67. Peppas N, Thomas J, McGinty J (2009) Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. J Biomater Sci Polym Ed 20:1–20PubMedCrossRefGoogle Scholar
  68. Peyman GA, Ganiban GJ (1995) Delivery systems for intraocular routes. Adv Drug Deliv Rev 16:107–123CrossRefGoogle Scholar
  69. Prasad AG, Schadlu R, Apte RS (2007) Intravitreal pharmacotherapy: applications in retinal disease. Compr Ophthalmol Update 8:259–269PubMedGoogle Scholar
  70. Rieke ER, Amaral J, Becerra SP et al (2010) Sustained subconjunctival protein delivery using a thermosetting gel delivery system. J Ocul Pharmacol Ther 26:55–64PubMedCrossRefGoogle Scholar
  71. Sanborn GE, Anand R, Torti RE et al (1992) Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis: use ofan intravitreal device. Arch Ophthalmol 110:188–195PubMedGoogle Scholar
  72. Sánchez-Vaquero V, Satriano C, Tejera-Sánchez N et al (2010) Characterization and cytocompatibility of hybrid aminosilane-agarose hydrogel scaffolds. Biointerphases 5:23–29PubMedCrossRefGoogle Scholar
  73. Schuetz Y, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68:19–25PubMedCrossRefGoogle Scholar
  74. Serra L, Domenech J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27:5440–5451PubMedCrossRefGoogle Scholar
  75. Shastri D, Prajapati S, Patel L (2010) Design and development of thermoreversible ophthalmic in situ hydrogel of moxifloxacin HCl. Curr Drug Deliv 7:238–243Google Scholar
  76. Shimura M, Nakazawa T, Yasuda K et al (2008) Comparative therapy evaluation of intravitreal bevacizumab and triamcinolone acetonide on persistent diffuse diabetic macular edema. Am J Ophthalmol 145:854–861PubMedCrossRefGoogle Scholar
  77. Singh A, Hosseini M, Hariprasad SM (2010) Polyethylene glycol hydrogel polymer sealant for closure of sutureless sclerotomies: a histologic study. Am J Ophthalmol 150(3):346–351PubMedCrossRefGoogle Scholar
  78. Swindle-Reilly KE, Shah M, Hamilton PD et al (2009) Rabbit study of an in situ forming hydrogel vitreous substitute. Invest Ophthalmol Vis Sci 50:4840–4846PubMedCrossRefGoogle Scholar
  79. Szepes A, Makai Z, Blümer C et al (2008) Characterization and drug delivery behaviour of starch-based hydrogels prepared via isostatic ultrahigh pressure. Carbohydr Polym 72:571–578CrossRefGoogle Scholar
  80. Tanaka Y, Kubota A, Matsusaki M et al (2010) Anisotropic mechanical properties of collagen hydrogels induced by uniaxial-flow for ocular applications. J Biomater Sci Polym Ed 22(11):1427–1442Google Scholar
  81. Ueda H, Hacker MC, Haesslein A et al (2007) Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems. J Biomed Mater Res A 83A:656–666CrossRefGoogle Scholar
  82. Van Tomme S, Mens A, van Nostrum C et al (2008) Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres. Biomacromolecules 9:158–165PubMedCrossRefGoogle Scholar
  83. Wadhwa S, Paliwal R, Paliwal SR et al (2009) Chitosan and its role in ocular therapeutics. Mini Rev Med Chem 9:1639–1647PubMedCrossRefGoogle Scholar
  84. Yasukawa T, Ogura Y, Tabata Y et al (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–281PubMedCrossRefGoogle Scholar
  85. Yin H, Gong C, Shi S et al (2010) Toxicity evaluation of biodegradable and thermosensitive PEG-PCL-PEG hydrogel as a potential in situ sustained ophthalmic drug delivery system. J Biomed Mater Res B 92:129–137Google Scholar
  86. Yokoyama F, Masada I, Shimamura K et al (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264:595–601CrossRefGoogle Scholar
  87. Zhang X, Yang Y, Chung T et al (2001) Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir 17:6094–6099CrossRefGoogle Scholar
  88. Zhou Y, Yang D, Ma M et al (2008) A pH-sensitive water-soluble N-carboxyethyl chitosan/poly(hydroxyethyl methacrylate) hydrogel as a potential drug sustained release matrix prepared by photopolymerization technique. Polym Adv Technol 19:1133–1141CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2011

Authors and Affiliations

  • Gauri P. Misra
    • 1
  • Thomas W. Gardner
    • 2
  • Tao L. Lowe
    • 3
    • 4
  1. 1.Department of Pharmaceutical SciencesThomas Jefferson University, School of PharmacyPhiladelphiaUSA
  2. 2.Department of Ophthalmology, Cellular and Molecular PhysiologyPenn State College of MedicineHersheyUSA
  3. 3.Department of Pharmaceutical Sciences, School of PharmacyThomas Jefferson UniversityPhiladelphiaUSA
  4. 4.Department of Pharmaceutical Sciences, College of PharmacyUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations