Skip to main content

Cell Surface Co-signaling Molecules in the Control of Innate and Adaptive Cancer Immunity

  • Chapter
  • First Online:
Innate Immune Regulation and Cancer Immunotherapy
  • 1795 Accesses

Abstract

Recent advances in cancer immunotherapy have focused on manipulating co-signaling pathways to direct or fine-tune antitumor immune responses. This is based on the findings that co-signaling pathways are pivotal in positive and negative regulation of innate and adaptive immunity to antigens. Importantly, cancer cells as well as cells in cancer microenvironments often aberrantly express co-signaling molecules to evade tumor immunity. We will focus our discussion on two co-signaling pathways including CD137/CD137L and B7-H1/PD-1. The data from animal models and clinical trials indicate that monoclonal antibodies and recombinant proteins targeting these co-signaling molecules are able to stimulate antitumor immune responses or ablate immune suppression. Co-signaling molecules thus add a new modality for mechanism-based design of combined immunotherapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadzadeh M et al (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Azuma T et al (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111(7):3635–3643

    Article  PubMed  CAS  Google Scholar 

  • Barber DL et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687

    Article  PubMed  CAS  Google Scholar 

  • Baxter AG, Hodgkin PD (2002) Activation rules: the two-signal theories of immune activation. Nat Rev Immunol 2(6):439–446

    PubMed  CAS  Google Scholar 

  • Bertram EM et al (2002) Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol 168(8):3777–3785

    PubMed  CAS  Google Scholar 

  • Butte MJ et al (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27(1):111–122

    Article  PubMed  CAS  Google Scholar 

  • Chemnitz JM et al (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173(2):945–954

    PubMed  CAS  Google Scholar 

  • Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4(5):336–347

    Article  PubMed  CAS  Google Scholar 

  • Cheuk AT et al (2004) Role of 4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther 11(3):215–226

    Article  PubMed  CAS  Google Scholar 

  • Choi BK et al (2007) Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res 67(18):8891–8899

    Article  PubMed  CAS  Google Scholar 

  • Croft M (2003) Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3(8):609–620

    Article  PubMed  CAS  Google Scholar 

  • Dawicki W, Watts TH (2004) Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol 34(3):743–751

    Article  PubMed  CAS  Google Scholar 

  • Dawicki W et al (2004) 4-1BB and OX40 act independently to facilitate robust CD8 and CD4 recall responses. J Immunol 173(10):5944–5951

    PubMed  CAS  Google Scholar 

  • Dong H, Chen L (2003) B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med 81(5):281–287

    PubMed  CAS  Google Scholar 

  • Dong H, Chen X (2006) Immunoregulatory role of B7-H1 in chronicity of inflammatory responses. Cell Mol Immunol 3(3):179–187

    PubMed  CAS  Google Scholar 

  • Dong H et al (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    PubMed  CAS  Google Scholar 

  • Dong H et al (2003) Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111(3):363–370

    PubMed  CAS  Google Scholar 

  • Dudley ME et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357

    Article  PubMed  CAS  Google Scholar 

  • Foell J et al (2003) CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB x NZW F1 mice. J Clin Invest 111(10):1505–1518

    PubMed  CAS  Google Scholar 

  • Foell JL et al (2004) Engagement of the CD137 (4-1BB) costimulatory molecule inhibits and reverses the autoimmune process in collagen-induced arthritis and establishes lasting disease resistance. Immunology 113(1):89–98

    Article  PubMed  CAS  Google Scholar 

  • Freeman GJ (2008) Structures of PD-1 with its ligands: sideways and dancing cheek to cheek. Proc Natl Acad Sci USA 105(30):10275–10276

    Article  PubMed  CAS  Google Scholar 

  • Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Goldberg MV et al (2007) Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 110(1):186–192

    Article  PubMed  CAS  Google Scholar 

  • Goodwin RG et al (1993) Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol 23(10):2631–2641

    Article  PubMed  CAS  Google Scholar 

  • Gray JC et al (2008) Optimising anti-tumour CD8 T-cell responses using combinations of immunomodulatory antibodies. Eur J Immunol 38(9):2499–2511

    Article  PubMed  CAS  Google Scholar 

  • Hirano F et al (2005) Blockade of B7-H1 and PD-1 by monoclonal antibodies potaentiates cancer therapeutic immunity. Cancer Res 65(3):1089–1096

    PubMed  CAS  Google Scholar 

  • Houot R et al (2009) Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood 114(16):3431–3438

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    PubMed  CAS  Google Scholar 

  • June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117(6):1466–1476

    Article  PubMed  CAS  Google Scholar 

  • Kim YH et al (2009) Mechanisms involved in synergistic anticancer effects of anti-4-1BB and cyclophosphamide therapy. Mol Cancer Ther 8(2):469–478

    Article  PubMed  CAS  Google Scholar 

  • Kober J et al (2008) The capacity of the TNF family members 4-1BBL, OX40L, CD70, GITRL, CD30L and LIGHT to costimulate human T cells. Eur J Immunol 38(10):2678–2688

    Article  PubMed  CAS  Google Scholar 

  • Kryczek I et al (2007) Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma. Cancer Res 67(18):8900–8905

    Article  PubMed  CAS  Google Scholar 

  • Kumar H et al (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388(4):621–625

    Article  PubMed  CAS  Google Scholar 

  • Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA 86(6):1963–1967

    Article  PubMed  CAS  Google Scholar 

  • Kwon BS et al (2002) Immune responses in 4-1BB (CD137)-deficient mice. J Immunol 168(11):5483–5490

    PubMed  CAS  Google Scholar 

  • Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Iwasaki A (2007) Innate control of adaptive immunity: dendritic cells and beyond. Semin Immunol 19(1):48–55

    Article  PubMed  CAS  Google Scholar 

  • Lee SC et al (2009a) Stimulation of the molecule 4-1BB enhances host defense against Listeria monocytogenes infection in mice by inducing rapid infiltration and activation of neutrophils and monocytes. Infect Immun 77(5):2168–2176

    Article  PubMed  CAS  Google Scholar 

  • Lee SW et al (2009b) Hypercostimulation through 4-1BB distorts homeostasis of immune cells. J Immunol 182(11):6753–6762

    Article  PubMed  CAS  Google Scholar 

  • Lynch DH (2008) The promise of 4-1BB (CD137)-mediated immunomodulation and the immunotherapy of cancer. Immunol Rev 222:277–286

    Article  PubMed  CAS  Google Scholar 

  • Melero I et al (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  PubMed  CAS  Google Scholar 

  • Melero I et al (2008) Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol Sci 29(8):383–390

    Article  PubMed  CAS  Google Scholar 

  • Melero I et al (2009) Palettes of vaccines and immunostimulatory monoclonal antibodies for combination. Clin Cancer Res 15(5):1507–1509

    Article  PubMed  CAS  Google Scholar 

  • Muller D et al (2008) A novel antibody-4-1BBL fusion protein for targeted costimulation in cancer immunotherapy. J Immunother 31(8):714–722

    Article  PubMed  Google Scholar 

  • Murillo O et al (2008) Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin Cancer Res 14(21):6895–6906

    Article  PubMed  CAS  Google Scholar 

  • Myers LM, Vella AT (2005) Interfacing T-cell effector and regulatory function through CD137 (4-1BB) co-stimulation. Trends Immunol 26(8):440–446

    Article  PubMed  CAS  Google Scholar 

  • Narazaki H et al (2010) CD137 anonist antibody prevents cancer recurrence: Contribution of CD137 on both hematopoietic and non-hematopoietic cells. Blood 115(10):1941–1948

    Article  PubMed  CAS  Google Scholar 

  • Okudaira K et al (2009) Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int J Oncol 35(4):741–749

    PubMed  CAS  Google Scholar 

  • Old LJ (1988) Tumor necrosis factor. Sci Am 258(5):59–60; 69–75

    Google Scholar 

  • Paulos CM et al (2008) Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunol Res 42(1–3):182–196

    Article  PubMed  Google Scholar 

  • Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA et al (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308

    Article  PubMed  CAS  Google Scholar 

  • Sansom DM (2000) CD28, CTLA-4 and their ligands: who does what and to whom? Immunology 101(2):169–177

    Article  PubMed  CAS  Google Scholar 

  • Schabowsky RH et al (2009). A novel form of 4-1BBL has better immunomodulatory activity than an agonistic anti-4-1BB Ab-associated severe toxicity. Vaccine 28(2):512–22

    Article  PubMed  CAS  Google Scholar 

  • Seo SK et al (2004) 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med 10(10):1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK et al (2009) Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4-1BB ligand eradicates established tumors. Cancer Res 69(10):4319–4326

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Siemann DW (2006) Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment. Anticancer Res 26(5A):3445–3453

    PubMed  CAS  Google Scholar 

  • Sun Y et al (2002a) Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nat Med 8(12):1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Sun Y et al (2002b) Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol 168(3):1457–1465

    PubMed  CAS  Google Scholar 

  • Tamura H et al (2003) Immunology of B7-H1 and its roles in human diseases. Int J Hematol 78(4):321–328

    Article  PubMed  CAS  Google Scholar 

  • Tan JT et al (1999) 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol 163(9):4859–4868

    PubMed  CAS  Google Scholar 

  • Teng MW et al (2009) CD1d-based combination therapy eradicates established tumors in mice. J Immunol 183(3):1911–1920

    Article  PubMed  CAS  Google Scholar 

  • Tseng SY et al (2001) B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 193(7):839–846

    Article  PubMed  CAS  Google Scholar 

  • Uno T et al (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12(6):693–698

    Article  PubMed  CAS  Google Scholar 

  • Wang S et al (2003) Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med 197(9):1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Wang C et al (2009a) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229(1):192–215

    Article  PubMed  CAS  Google Scholar 

  • Wang W et al (2009b) PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int Immunol 21(9):1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  PubMed  CAS  Google Scholar 

  • Wilcox RA et al (2002a) Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol 168(9):4262–4267

    PubMed  CAS  Google Scholar 

  • Wilcox RA et al (2002b) Impaired infiltration of tumor-specific cytolytic T cells in the absence of interferon-gamma despite their normal maturation in lymphoid organs during CD137 monoclonal antibody therapy. Cancer Res 62(15):4413–4418

    PubMed  CAS  Google Scholar 

  • Wilcox RA et al (2002c) Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 109(5):651–659

    PubMed  CAS  Google Scholar 

  • Wilcox RA et al (2002d) Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol 169(8):4230–4236

    PubMed  CAS  Google Scholar 

  • Wu K et al (2009) Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res 69(20):8067–8075

    Article  PubMed  CAS  Google Scholar 

  • Xiao H et al (2007) Soluble PD-1 facilitates 4-1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res 13(6):1823–1830

    Article  PubMed  CAS  Google Scholar 

  • Zhang H et al (2007) 4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy. J Immunol 179(7):4910–4918

    PubMed  CAS  Google Scholar 

  • Zhu G et al (2001) Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Ealpha)-transgenic mice. J Immunol 167(5):2671–2676

    PubMed  CAS  Google Scholar 

  • Zhu Y et al (2007) CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood 109(11):4882–4889

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zarling, S., Chen, L. (2012). Cell Surface Co-signaling Molecules in the Control of Innate and Adaptive Cancer Immunity. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_14

Download citation

Publish with us

Policies and ethics