Advertisement

Animal Models of Hyperinsulinemia, Insulin Resistance, and Cancer

  • Ruslan Novosyadlyy
  • Archana Vijayakumar
  • Yvonne Fierz
  • Derek LeRoithEmail author
Chapter
Part of the Energy Balance and Cancer book series (EBAC, volume 1)

Abstract

Numerous lines of evidence indicate that insulin and its receptor regulate cell proliferation, survival and transformation, and thus, tumorigenesis [52]. Indeed, the fact that insulin has a potent tumor-promoting activity has been known for a long time. In wild-type animals, administration of exogenous insulin markedly enhances development of experimental breast and colon tumors [34, 68, 117]. In contrast, insulinopenia in animals with chemically-induced type 1 diabetes (T1D) results in a significantly reduced tumor growth, which is restored after insulin administration [29, 67, 112, 113]. Moreover, intraportal implantation of pancreatic islets in rats with T1D creates an insulin-enriched microenvironment, which promotes hepatocarcinogenesis [43]. The aforementioned studies thus link insulin and cancer mechanistically, and indicate that insulin plays the role of both a tumor initiator and promoter.

Keywords

Mammary Gland Development Aberrant Crypt Focus Colon Carcinogenesis Monogenic Obesity Mouse Mammary Gland Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abel ED, Peroni O et al (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409(6821):729–733PubMedGoogle Scholar
  2. 2.
    Ablamunits V, Cohen Y et al (2006) Susceptibility to induced and spontaneous carcinogenesis is increased in fatless A-ZIP/F-1 but not in obese ob/ob mice. Cancer Res 66(17):8897–8902PubMedGoogle Scholar
  3. 3.
    Aksoy M, Berger MR et al (1987) The influence of different levels of dietary fat on the incidence and growth of MNU-induced mammary carcinoma in rats. Nutr Cancer 9(4):227–235PubMedGoogle Scholar
  4. 4.
    Aylsworth CF, Van Vugt DA et al (1984) Role of estrogen and prolactin in stimulation of carcinogen-induced mammary tumor development by a high-fat diet. Cancer Res 44(7):2835–2840PubMedGoogle Scholar
  5. 5.
    Black PL, Holly M et al (1983) Enhanced tumor resistance and immunocompetence in obese (ob/ob) mice. Life Sci 33(Suppl 1):715–718PubMedGoogle Scholar
  6. 6.
    Boutwell RK, Brush MK et al (1949) The stimulating effect of dietary fat on carcinogenesis. Cancer Res 9(12):741–746PubMedGoogle Scholar
  7. 7.
    Boylan ES, Cohen LA (1986) The influence of dietary fat on mammary tumor metastasis in the rat. Nutr Cancer 8(3):193–200PubMedGoogle Scholar
  8. 8.
    Bray GA (1977) Experimental models for the study of obesity: introductory remarks. Fed Proc 36(2):137–138PubMedGoogle Scholar
  9. 9.
    Bruning JC, Winnay J et al (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88(4):561–572PubMedGoogle Scholar
  10. 10.
    Butler AA (2006) The melanocortin system and energy balance. Peptides 27(2):281–290PubMedGoogle Scholar
  11. 11.
    Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591PubMedGoogle Scholar
  12. 12.
    Carroll KK, Khor HT (1970) Effects of dietary fat and dose level of 7,12-dimethylbenz(alpha)-anthracene on mammary tumor incidence in rats. Cancer Res 30(8):2260–2264PubMedGoogle Scholar
  13. 13.
    Chan PC, Didato F et al (1975) High dietary fat, elevation of rat serum prolactin and mammary cancer. Proc Soc Exp Biol Med 149(1):133–135PubMedGoogle Scholar
  14. 14.
    Chan PC, Head JF et al (1977) Influence of dietary fat on the induction of mammary tumors by N-nitrosomethylurea: associated hormone changes and differences between Sprague–Dawley and F344 rats. J Natl Cancer Inst 59(4):1279–1283PubMedGoogle Scholar
  15. 15.
    Cho H, Mu J et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731PubMedGoogle Scholar
  16. 16.
    Chua SC Jr, Chung WK et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271(5251):994–996PubMedGoogle Scholar
  17. 17.
    Cleary MP, Grande JP et al (2004) Diet-induced obesity and mammary tumor development in MMTV-neu female mice. Nutr Cancer 50(2):174–180PubMedGoogle Scholar
  18. 18.
    Cleary MP, Grande JP et al (2004) Effect of high fat diet on body weight and mammary tumor latency in MMTV-TGF-alpha mice. Int J Obes Relat Metab Disord 28(8):956–962PubMedGoogle Scholar
  19. 19.
    Cleary MP, Juneja SC et al (2004) Leptin receptor-deficient MMTV-TGF-alpha/Lepr(db)Lepr(db) female mice do not develop oncogene-induced mammary tumors. Exp Biol Med (Maywood) 229(2):182–193Google Scholar
  20. 20.
    Cleary MP, Phillips FC et al (2003) Genetically obese MMTV-TGF-alpha/Lep(ob)Lep(ob) female mice do not develop mammary tumors. Breast Cancer Res Treat 77(3):205–215PubMedGoogle Scholar
  21. 21.
    Cohen LA, Chan PC (1982) Dietary cholesterol and experimental mammary cancer development. Nutr Cancer 4(2):99–106PubMedGoogle Scholar
  22. 22.
    Cohen LA, Chan PC et al (1981) The role of a high-fat diet in enhancing the development of mammary tumors in ovariectomized rats. Cancer 47(1):66–71PubMedGoogle Scholar
  23. 23.
    Cohen LA, Chen-Backlund JY et al (1993) Effect of varying proportions of dietary menhaden and corn oil on experimental rat mammary tumor promotion. Lipids 28(5):449–456PubMedGoogle Scholar
  24. 24.
    Cohen LA, Choi K et al (1986) Effect of varying proportions of dietary fat on the development of N-nitrosomethylurea-induced rat mammary tumors. Anticancer Res 6(2):215–218PubMedGoogle Scholar
  25. 25.
    Cohen LA, Choi KW et al (1988) Influence of dietary fat, caloric restriction, and voluntary exercise on N-nitrosomethylurea-induced mammary tumorigenesis in rats. Cancer Res 48(15):4276–4283PubMedGoogle Scholar
  26. 26.
    Cohen LA, Kendall ME et al (1991) Modulation of N-nitrosomethylurea-induced mammary tumor promotion by dietary fiber and fat. J Natl Cancer Inst 83(7):496–501PubMedGoogle Scholar
  27. 27.
    Cohen LA, Thompson DO et al (1986) Dietary fat and mammary cancer. I. Promoting effects of different dietary fats on N-nitrosomethylurea-induced rat mammary tumorigenesis. J Natl Cancer Inst 77(1):33–42PubMedGoogle Scholar
  28. 28.
    Cohen LA, Thompson DO et al (1984) Influence of dietary medium-chain triglycerides on the development of N-methylnitrosourea-induced rat mammary tumors. Cancer Res 44(11):5023–5028PubMedGoogle Scholar
  29. 29.
    Cohen ND, Hilf R (1974) Influence of insulin on growth and metabolism of 7,12-dimethylbenz­(alpha)anthracene-induced mammary tumors. Cancer Res 34(12):3245–3252PubMedGoogle Scholar
  30. 30.
    Coleman DL (1973) Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9(4):294–298PubMedGoogle Scholar
  31. 31.
    Coleman DL, Hummel KP (1969) Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol 217(5):1298–1304PubMedGoogle Scholar
  32. 32.
    Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9(4):287–293PubMedGoogle Scholar
  33. 33.
    Coleman DL, Hummel KP (1974) Hyperinsulinemia in pre-weaning diabetes (db) mice. Diabetologia 10(Suppl):607–610PubMedGoogle Scholar
  34. 34.
    Corpet DE, Jacquinet C et al (1997) Insulin injections promote the growth of aberrant crypt foci in the colon of rats. Nutr Cancer 27(3):316–320PubMedGoogle Scholar
  35. 35.
    Couldrey C, Moitra J et al (2002) Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn 223(4):459–468PubMedGoogle Scholar
  36. 36.
    Danforth C (1927) Hereditary adiposity in mice. J Hered 18(4):153–162Google Scholar
  37. 37.
    de Assis S, Khan G et al (2006) High birth weight increases mammary tumorigenesis in rats. Int J Cancer 119(7):1537–1546PubMedGoogle Scholar
  38. 38.
    de Assis S, Wang M et al (2006) Excessive weight gain during pregnancy increases carcinogen-induced mammary tumorigenesis in Sprague–Dawley and lean and obese Zucker rats. J Nutr 136(4):998–1004PubMedGoogle Scholar
  39. 39.
    de Bravo MG, de Antueno RJ et al (1991) Effects of an eicosapentaenoic and docosahexaenoic acid concentrate on a human lung carcinoma grown in nude mice. Lipids 26(11):866–870PubMedGoogle Scholar
  40. 40.
    Debons AF, Krimsky I et al (1977) Gold thioglucose obesity syndrome. Fed Proc 36(2):143–147PubMedGoogle Scholar
  41. 41.
    DeWille JW, Waddell K et al (1993) Dietary fat promotes mammary tumorigenesis in MMTV/v-Ha-ras transgenic mice. Cancer Lett 69(1):59–66PubMedGoogle Scholar
  42. 42.
    Dinkova-Kostova AT, Fahey JW et al (2008) Rapid body weight gain increases the risk of UV radiation-induced skin carcinogenesis in SKH-1 hairless mice. Nutr Res 28(8):539–543PubMedGoogle Scholar
  43. 43.
    Dombrowski F, Bannasch P et al (1997) Hepatocellular neoplasms induced by low-number pancreatic islet transplants in streptozotocin diabetic rats. Am J Pathol 150(3):1071–1087PubMedGoogle Scholar
  44. 44.
    Drew JE, Farquharson AJ et al (2007) Insulin, leptin, and adiponectin receptors in colon: regulation relative to differing body adiposity independent of diet and in response to dimethylhydrazine. Am J Physiol Gastrointest Liver Physiol 293(4):G682–G691PubMedGoogle Scholar
  45. 45.
    Ealey KN, Lu S et al (2008) Development of aberrant crypt foci in the colons of ob/ob and db/db mice: evidence that leptin is not a promoter. Mol Carcinog 47(9):667–677PubMedGoogle Scholar
  46. 46.
    Earl TM, Nicoud IB et al (2009) Silencing of TLR4 decreases liver tumor burden in a murine model of colorectal metastasis and hepatic steatosis. Ann Surg Oncol 16(4):1043–1050PubMedGoogle Scholar
  47. 47.
    Ellison G, Klinowska T et al (2002) Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55(5):294–299PubMedGoogle Scholar
  48. 48.
    Fan W, Boston BA et al (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385(6612):165–168PubMedGoogle Scholar
  49. 49.
    Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458PubMedGoogle Scholar
  50. 50.
    Fernandez AM, Kim JK et al (2001) Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15(15):1926–1934PubMedGoogle Scholar
  51. 51.
    Fodde R, Edelmann W et al (1994) A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 91(19):8969–8973PubMedGoogle Scholar
  52. 52.
    Frasca F, Pandini G et al (2008) The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 114(1):23–37PubMedGoogle Scholar
  53. 53.
    Fujisawa T, Endo H et al (2008) Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut 57(11):1531–1538PubMedGoogle Scholar
  54. 54.
    Fujise T, Iwakiri R et al (2007) Long-term feeding of various fat diets modulates azoxymethane-induced colon carcinogenesis through Wnt/beta-catenin signaling in rats. Am J Physiol Gastrointest Liver Physiol 292(4):G1150–G1156PubMedGoogle Scholar
  55. 55.
    Genuth SM, Przybylski RJ et al (1971) Insulin resistance in genetically obese, hyperglycemic mice. Endocrinology 88(5):1230–1238PubMedGoogle Scholar
  56. 56.
    Gonzalez MJ, Schemmel RA et al (1991) Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis 12(7):1231–1235PubMedGoogle Scholar
  57. 57.
    Gordon RR, Hunter KW et al (2008) Genotype X diet interactions in mice predisposed to mammary cancer: II. Tumors and metastasis. Mamm Genome 19(3):179–189PubMedGoogle Scholar
  58. 58.
    Gravaghi C, Bo J et al (2008) Obesity enhances gastrointestinal tumorigenesis in Apc-mutant mice. Int J Obes (Lond) 32(11):1716–1719Google Scholar
  59. 59.
    Hakkak R, Holley AW et al (2005) Obesity promotes 7,12-dimethylbenz(a)anthracene-induced mammary tumor development in female zucker rats. Breast Cancer Res 7(5):R627–R633PubMedGoogle Scholar
  60. 60.
    Hakkak R, MacLeod S et al (2007) Obesity increases the incidence of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in an ovariectomized Zucker rat model. Int J Oncol 30(3):557–563PubMedGoogle Scholar
  61. 61.
    Halaas JL, Gajiwala KS et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546PubMedGoogle Scholar
  62. 62.
    Hardie LJ, Rayner DV et al (1996) Circulating leptin levels are modulated by fasting, cold exposure and insulin administration in lean but not Zucker (fa/fa) rats as measured by ELISA. Biochem Biophys Res Commun 223(3):660–665PubMedGoogle Scholar
  63. 63.
    Hardman WE (2007) Dietary canola oil suppressed growth of implanted MDA-MB 231 human breast tumors in nude mice. Nutr Cancer 57(2):177–183PubMedGoogle Scholar
  64. 64.
    Heston WE (1942) Relationship between the lethal yellow (A(y)) gene of the mouse and susceptibility to induced pulmonary tumors. J Natl Cancer Inst 3(3):303–308Google Scholar
  65. 65.
    Heston WE, Deringer MK (1947) Relationship between the lethal yellow (Ay) gene of the mouse and susceptibility to spontaneous pulmonary tumors. J Natl Cancer Inst 7(6):463–465PubMedGoogle Scholar
  66. 66.
    Heukamp I, Gregor JI et al (2006) Influence of different dietary fat intake on liver metastasis and hepatic lipid peroxidation in BOP-induced pancreatic cancer in Syrian hamsters. Pancreatology 6(1–2):96–102PubMedGoogle Scholar
  67. 67.
    Heuson JC, Legros N (1972) Influence of insulin deprivation on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction. Cancer Res 32(2):226–232PubMedGoogle Scholar
  68. 68.
    Heuson JC, Legros N et al (1972) Influence of insulin administration on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in intact, oophorectomized, and hypophysectomized rats. Cancer Res 32(2):233–238PubMedGoogle Scholar
  69. 69.
    Hilakivi-Clarke L, Onojafe I et al (1996) Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. J Natl Cancer Inst 88(24):1821–1827PubMedGoogle Scholar
  70. 70.
    Hirose Y, Hata K et al (2004) Enhancement of development of azoxymethane-induced colonic premalignant lesions in C57BL/KsJ-db/db mice. Carcinogenesis 25(5):821–825PubMedGoogle Scholar
  71. 71.
    Hu X, Juneja SC et al (2002) Leptin–a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst 94(22):1704–1711PubMedGoogle Scholar
  72. 72.
    Hummel KP, Dickie MM et al (1966) Diabetes, a new mutation in the mouse. Science 153(740):1127–1128PubMedGoogle Scholar
  73. 73.
    Ingalls AM, Dickie MM et al (1950) Obese, a new mutation in the house mouse. J Hered 41(12):317–318PubMedGoogle Scholar
  74. 74.
    Kahle EB, Butz KG et al (1997) The rat corpulent (cp) mutation maps to the same interval on (Pgm1-Glut1) rat chromosome 5 as the fatty (fa) mutation. Obes Res 5(2):142–145PubMedGoogle Scholar
  75. 75.
    Karmali RA, Reichel P et al (1987) The effects of dietary omega-3 fatty acids on the DU-145 transplantable human prostatic tumor. Anticancer Res 7(6):1173–1179PubMedGoogle Scholar
  76. 76.
    Kato T, Hancock RL et al (2002) Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett 187(1–2):169–177PubMedGoogle Scholar
  77. 77.
    Katz EB, Stenbit AE et al (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377(6545):151–155PubMedGoogle Scholar
  78. 78.
    Kido Y, Burks DJ et al (2000) Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 105(2):199–205PubMedGoogle Scholar
  79. 79.
    Kimura Y, Sumiyoshi M (2007) High-fat, high-sucrose, and high-cholesterol diets accelerate tumor growth and metastasis in tumor-bearing mice. Nutr Cancer 59(2):207–216PubMedGoogle Scholar
  80. 80.
    Klurfeld DM, Lloyd LM et al (1991) Reduction of enhanced mammary carcinogenesis in LA/N-cp (corpulent) rats by energy restriction. Proc Soc Exp Biol Med 196(4):381–384PubMedGoogle Scholar
  81. 81.
    Kobayashi N, Barnard RJ et al (2008) Effect of low-fat diet on development of prostate cancer and Akt phosphorylation in the Hi-Myc transgenic mouse model. Cancer Res 68(8):3066–3073PubMedGoogle Scholar
  82. 82.
    Koch TC, Briviba K et al (2008) Obesity-related promotion of aberrant crypt foci in DMH-treated obese Zucker rats correlates with dyslipidemia rather than hyperinsulinemia. Eur J Nutr 47(3):161–170PubMedGoogle Scholar
  83. 83.
    Koohestani N, Tran TT et al (1997) Insulin resistance and promotion of aberrant crypt foci in the colons of rats on a high-fat diet. Nutr Cancer 29(1):69–76PubMedGoogle Scholar
  84. 84.
    Kubota N, Tobe K et al (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49(11):1880–1889PubMedGoogle Scholar
  85. 85.
    Kuklin AI, Mynatt RL et al (2004) Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes. Mol Cancer 3:17PubMedGoogle Scholar
  86. 86.
    Lann D, LeRoith D (2008) The role of endocrine insulin-like growth factor-I and insulin in breast cancer. J Mammary Gland Biol Neoplasia 13(4):371–379PubMedGoogle Scholar
  87. 87.
    Lee WM, Lu S et al (2001) Susceptibility of lean and obese Zucker rats to tumorigenesis induced by N-methyl-N-nitrosourea. Cancer Lett 162(2):155–160PubMedGoogle Scholar
  88. 88.
    Leung G, Benzie IF et al (2002) No effect of a high-fat diet on promotion of sex hormone-induced prostate and mammary carcinogenesis in the Noble rat model. Br J Nutr 88(4):399–409PubMedGoogle Scholar
  89. 89.
    Liu Z, Uesaka T et al (2001) High fat diet enhances colonic cell proliferation and carcinogenesis in rats by elevating serum leptin. Int J Oncol 19(5):1009–1014PubMedGoogle Scholar
  90. 90.
    Lu YP, Lou YR et al (2006) Stimulatory effect of voluntary exercise or fat removal (partial lipectomy) on apoptosis in the skin of UVB light-irradiated mice. Proc Natl Acad Sci USA 103(44):16301–16306PubMedGoogle Scholar
  91. 91.
    Luijten M, Thomsen AR et al (2004) Effects of soy-derived isoflavones and a high-fat diet on spontaneous mammary tumor development in Tg.NK (MMTV/c-neu) mice. Nutr Cancer 50(1):46–54PubMedGoogle Scholar
  92. 92.
    Luijten M, Verhoef A et al (2007) Modulation of mammary tumor development in Tg.NK (MMTV/c-neu) mice by dietary fatty acids and life stage-specific exposure to phytoestrogens. Reprod Toxicol 23(3):407–413PubMedGoogle Scholar
  93. 93.
    Mai V, Colbert LH et al (2003) Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res 63(8):1752–1755PubMedGoogle Scholar
  94. 94.
    Matsui Y, Halter SA et al (1990) Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell 61(6):1147–1155PubMedGoogle Scholar
  95. 95.
    Mori A, Sakurai H et al (2006) Severe pulmonary metastasis in obese and diabetic mice. Int J Cancer 119(12):2760–2767PubMedGoogle Scholar
  96. 96.
    Narita S, Tsuchiya N et al (2008) Candidate genes involved in enhanced growth of human prostate cancer under high fat feeding identified by microarray analysis. Prostate 68(3):321–335PubMedGoogle Scholar
  97. 97.
    Nunez NP, Oh WJ et al (2006) Accelerated tumor formation in a fatless mouse with type 2 diabetes and inflammation. Cancer Res 66(10):5469–5476PubMedGoogle Scholar
  98. 98.
    Nunez NP, Perkins SN et al (2008) Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer 60(4):534–541PubMedGoogle Scholar
  99. 99.
    Otto C, Kaemmerer U et al (2008) Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8:122PubMedGoogle Scholar
  100. 100.
    Phillips MS, Liu Q et al (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13(1):18–19PubMedGoogle Scholar
  101. 101.
    Poretsky L, Cataldo NA et al (1999) The insulin-related ovarian regulatory system in health and disease. Endocr Rev 20(4):535–582PubMedGoogle Scholar
  102. 102.
    Raju J, Bird RP (2003) Energy restriction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor beta and cyclooxygenase isoforms in Zucker obese (fa/fa) rats. Cancer Res 63(20):6595–6601PubMedGoogle Scholar
  103. 103.
    Rao CV, Hirose Y et al (2001) Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids. Cancer Res 61(5):1927–1933PubMedGoogle Scholar
  104. 104.
    Ray A, Nkhata KJ et al (2007) Diet-induced obesity and mammary tumor development in relation to estrogen receptor status. Cancer Lett 253(2):291–300PubMedGoogle Scholar
  105. 105.
    Rose DP, Cohen LA (1988) Effects of dietary menhaden oil and retinyl acetate on the growth of DU 145 human prostatic adenocarcinoma cells transplanted into athymic nude mice. Carcinogenesis 9(4):603–605PubMedGoogle Scholar
  106. 106.
    Rose DP, Connolly JM (1993) Effects of dietary omega-3 fatty acids on human breast cancer growth and metastases in nude mice. J Natl Cancer Inst 85(21):1743–1747PubMedGoogle Scholar
  107. 107.
    Rose DP, Connolly JM et al (1996) Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res 2(10):1751–1756PubMedGoogle Scholar
  108. 108.
    Rose DP, Connolly JM et al (1991) Effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. J Natl Cancer Inst 83(20):1491–1495PubMedGoogle Scholar
  109. 109.
    Rose DP, Connolly JM et al (1995) Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst 87(8):587–592PubMedGoogle Scholar
  110. 110.
    Russell JC, Ahuja SK et al (1987) Insulin resistance and impaired glucose tolerance in the atherosclerosis-prone LA/N corpulent rat. Arteriosclerosis 7(6):620–626PubMedGoogle Scholar
  111. 111.
    Schwartz MW, Woods SC et al (2000) Central nervous system control of food intake. Nature 404(6778):661–671PubMedGoogle Scholar
  112. 112.
    Shafie SM, Grantham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67(1):51–56PubMedGoogle Scholar
  113. 113.
    Sharon R, Pillemer G et al (1993) Insulin dependence of murine T-cell lymphoma. II. Insulin-deficient diabetic mice and mice fed low-energy diet develop resistance to lymphoma growth. Int J Cancer 53(5):843–849PubMedGoogle Scholar
  114. 114.
    Silverstone H, Tannenbaum A (1951) The influence of dietary fat and riboflavin on the formation of spontaneous hepatomas in the mouse. Cancer Res 11(3):200–203PubMedGoogle Scholar
  115. 115.
    Sylvester PW, Ip C et al (1986) Effects of high dietary fat on the growth and development of ovarian-independent carcinogen-induced mammary tumors in rats. Cancer Res 46(2):763–769PubMedGoogle Scholar
  116. 116.
    Thompson CI, Kreider JW et al (1983) Genetically obese mice: resistance to metastasis of B16 melanoma and enhanced T-lymphocyte mitogenic responses. Science 220(4602):1183–1185PubMedGoogle Scholar
  117. 117.
    Tran TT, Medline A et al (1996) Insulin promotion of colon tumors in rats. Cancer Epidemiol Biomark Prev 5(12):1013–1015Google Scholar
  118. 118.
    Truett GE, Bahary N et al (1991) Rat obesity gene fatty (fa) maps to chromosome 5: evidence for homology with the mouse gene diabetes (db). Proc Natl Acad Sci USA 88(17):7806–7809PubMedGoogle Scholar
  119. 119.
    Venkateswaran V, Haddad AQ et al (2007) Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J Natl Cancer Inst 99(23):1793–1800PubMedGoogle Scholar
  120. 120.
    Vona-Davis L, Howard-McNatt M et al (2007) Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes Rev 8(5):395–408PubMedGoogle Scholar
  121. 121.
    Wang Y, Ausman LM et al (2009) Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine-initiated early hepatocarcinogenesis in rats. Int J Cancer 124(3):540–546PubMedGoogle Scholar
  122. 122.
    Waxler SH, Brecher G et al (1979) The effect of fat-enriched diet on the incidence of spontaneous mammary tumors in obese mice. Proc Soc Exp Biol Med 162(2):365–368PubMedGoogle Scholar
  123. 123.
    Waxler SH, Leef MF (1966) Augmentation of mammary tumors in castrated obese C3H mice. Cancer Res 26(5):860–862PubMedGoogle Scholar
  124. 124.
    Waxler SH, Tabar P (1953) Appearance of hepatomas in obese C3H male mice. Stanford Med Bull 11(4):272–273PubMedGoogle Scholar
  125. 125.
    Weber RV, Stein DE et al (2000) Obesity potentiates AOM-induced colon cancer. Dig Dis Sci 45(5):890–895PubMedGoogle Scholar
  126. 126.
    Welsch CW, DeHoog JV et al (1985) Influence of dietary fat levels on development and hormone responsiveness of the mouse mammary gland. Cancer Res 45(12 Pt 1):6147–6154PubMedGoogle Scholar
  127. 127.
    Welsch CW, O’Connor DH (1989) Influence of the type of dietary fat on developmental growth of the mammary gland in immature and mature female BALB/c mice. Cancer Res 49(21):5999–6007PubMedGoogle Scholar
  128. 128.
    Withers DJ, Gutierrez JS et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391(6670):900–904PubMedGoogle Scholar
  129. 129.
    Wolff GL (1987) Body weight and cancer. Am J Clin Nutr 45(1 Suppl):168–180PubMedGoogle Scholar
  130. 130.
    Wolff GL, Roberts DW et al (1986) Prenatal determination of obesity, tumor susceptibility, and coat color pattern in viable yellow (Avy/a) mice. The yellow mouse syndrome. J Hered 77(3):151–158PubMedGoogle Scholar
  131. 131.
    Wolff GL, Roberts DW et al (1987) Tumorigenic responses to lindane in mice: potentiation by a dominant mutation. Carcinogenesis 8(12):1889–1897PubMedGoogle Scholar
  132. 132.
    Yakar S, Nunez NP et al (2006) Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology 147(12):5826–5834PubMedGoogle Scholar
  133. 133.
    Yang W, Bancroft L et al (2003) Targeted inactivation of p27kip1 is sufficient for large and small intestinal tumorigenesis in the mouse, which can be augmented by a Western-style high-risk diet. Cancer Res 63(16):4990–4996PubMedGoogle Scholar
  134. 134.
    Yang WC, Mathew J et al (2001) Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res 61(2):565–569PubMedGoogle Scholar
  135. 135.
    Yen TT, Gill AM et al (1994) Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J 8(8):479–488PubMedGoogle Scholar
  136. 136.
    Z’Graggen K, Warshaw AL et al (2001) Promoting effect of a high-fat/high-protein diet in DMBA-induced ductal pancreatic cancer in rats. Ann Surg 233(5):688–695PubMedGoogle Scholar
  137. 137.
    Zhang Y, Proenca R et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432PubMedGoogle Scholar
  138. 138.
    Zucker LM, Zucker TF (1961) Fatty – new mutation in rat. J Hered 52(6):275–278Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ruslan Novosyadlyy
    • 1
  • Archana Vijayakumar
    • 1
  • Yvonne Fierz
    • 1
  • Derek LeRoith
    • 1
    Email author
  1. 1.Division of Endocrinology, Diabetes and Bone Diseases, Department of MedicineMount Sinai School of MedicineNew YorkUSA

Personalised recommendations