Insulin/IGF-1 Signaling Nodes and their Role in Carcinogenesis

  • Cullen M. Taniguchi
  • C. Ronald KahnEmail author
Part of the Energy Balance and Cancer book series (EBAC, volume 1)


The dominant hormone regulating metabolic homeostasis and the switch between the anabolic and catabolic states is insulin. At the cellular level, the action of insulin and the closely related insulin-like growth factors (IGF)-1 and -2, are mediated through a complex network of diverging and converging events (reviewed in [1]). The insulin and IGF-1 receptors (IR and IGF-1R) are members of the family of receptor tyrosine kinases. Following hormone binding, these receptors undergo autophosphorylation, which activates the kinase toward other substrates termed the insulin receptor substrate (IRS) proteins. In contrast to most other tyrosine kinase receptors, it is the phosphorylated IRS proteins, rather than the receptors themselves, that link the action of these hormones to two main signaling pathways: the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAP kinase pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation (reviewed in [2]) (Fig. 2.1).


Insulin Receptor Regulatory Subunit PI3K Pathway Growth Factor Signaling Serine Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96PubMedCrossRefGoogle Scholar
  2. 2.
    Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182:31–48PubMedCrossRefGoogle Scholar
  3. 3.
    Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB et al (2008) Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300:2754–2764PubMedCrossRefGoogle Scholar
  4. 4.
    Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J et al (2009) Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet 373:1083–1096PubMedCrossRefGoogle Scholar
  5. 5.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569–578PubMedCrossRefGoogle Scholar
  6. 6.
    Vairaktaris E, Spyridonidou S, Goutzanis L, Vylliotis A, Lazaris A et al (2007) Diabetes and oral oncogenesis. Anticancer Res 27:4185–4193PubMedGoogle Scholar
  7. 7.
    Wunderlich FT, Luedde T, Singer S, Schmidt-Supprian M, Baumgartl J et al (2008) Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc Natl Acad Sci USA 105:1297–1302PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang B, Roth RA (1992) The insulin receptor-related receptor. Tissue expression, ligand binding specificity, and signaling capabilities. J Biol Chem 267:18320–18328PubMedGoogle Scholar
  9. 9.
    Becker AB, Roth RA (1990) Insulin receptor structure and function in normal and pathological conditions. Annu Rev Med 41:99–115PubMedCrossRefGoogle Scholar
  10. 10.
    Hedo JA, Kahn CR, Hayashi M, Yamada KM, Kasuga M (1983) Biosynthesis and glycosylation of the insulin receptor. Evidence for a single polypeptide precursor of the two major subunits. J Biol Chem 258:10020–10026PubMedGoogle Scholar
  11. 11.
    Baron V, Kaliman P, Gautier N, Van Obberghen E (1992) The insulin receptor activation process involves localized conformational changes. J Biol Chem 267:23290–23294PubMedGoogle Scholar
  12. 12.
    Ablooglu AJ, Kohanski RA (2001) Activation of the insulin receptor’s kinase domain changes the rate-determining step of substrate phosphorylation. Biochemistry 40:504–513PubMedCrossRefGoogle Scholar
  13. 13.
    Goren HJ, White MF, Kahn CR (1987) Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity. Biochemistry 26:2374–2382PubMedCrossRefGoogle Scholar
  14. 14.
    Desbois-Mouthon C, Sert-Langeron C, Magre J, Oreal E, Blivet MJ et al (1996) Deletion of Asn281 in the alpha-subunit of the human insulin receptor causes constitutive activation of the receptor and insulin desensitization. J Clin Endocrinol Metab 81:719–727PubMedCrossRefGoogle Scholar
  15. 15.
    Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S et al (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548PubMedCrossRefGoogle Scholar
  16. 16.
    Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL et al (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489PubMedCrossRefGoogle Scholar
  17. 17.
    Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE et al (2002) PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci USA 99:11357–11362PubMedCrossRefGoogle Scholar
  18. 18.
    Rondinone CM, Trevillyan JM, Clampit J, Gum RJ, Berg C et al (2002) Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 51:2405–2411PubMedCrossRefGoogle Scholar
  19. 19.
    Gum RJ, Gaede LL, Koterski SL, Heindel M, Clampit JE et al (2003) Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 52:21–28PubMedCrossRefGoogle Scholar
  20. 20.
    Ueki K, Kondo T, Tseng YH, Kahn CR (2004) Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci USA 101:10422–10427PubMedCrossRefGoogle Scholar
  21. 21.
    Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446PubMedCrossRefGoogle Scholar
  22. 22.
    Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D et al (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15958–15991CrossRefGoogle Scholar
  23. 23.
    Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K et al (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 276:47944–47949PubMedGoogle Scholar
  24. 24.
    Wick KR, Werner ED, Langlais P, Ramos FJ, Dong LQ et al (2003) Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem 278:8460–8467PubMedCrossRefGoogle Scholar
  25. 25.
    Dong H, Maddux BA, Altomonte J, Meseck M, Accili D et al (2005) Increased hepatic levels of the insulin receptor inhibitor, PC-1/NPP1, induce insulin resistance and glucose intolerance. Diabetes 54:367–372PubMedCrossRefGoogle Scholar
  26. 26.
    Sutherland KD, Lindeman GJ, Visvader JE (2007) Knocking off SOCS genes in the mammary gland. Cell Cycle 6:799–803PubMedCrossRefGoogle Scholar
  27. 27.
    McClain DA (1992) Mechanism and role of insulin receptor endocytosis. Am J Med Sci 304:192–201PubMedCrossRefGoogle Scholar
  28. 28.
    Friedman JE, Ishizuka T, Liu S, Farrell CJ, Bedol D et al (1997) Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am J Physiol 273:E1014–E1023PubMedGoogle Scholar
  29. 29.
    Mathieu MC, Clark GM, Allred DC, Goldfine ID, Vigneri R (1997) Insulin receptor expression and clinical outcome in node-negative breast cancer. Proc Assoc Am Physicians 109:565–571PubMedGoogle Scholar
  30. 30.
    Sesti G, Tullio AN, D’Alfonso R, Napolitano ML, Marini MA et al (1994) Tissue-specific expression of two alternatively spliced isoforms of the human insulin receptor protein. Acta Diabetol 31:59–65PubMedCrossRefGoogle Scholar
  31. 31.
    Pashmforoush M, Yoshimasa Y, Steiner DF (1994) Exon 11 enhances insulin binding affinity and tyrosine kinase activity of the human insulin proreceptor. J Biol Chem 269:32639–32648PubMedGoogle Scholar
  32. 32.
    Vogt B, Carrascosa JM, Ermel B, Ullrich A, Haring HU (1991) The two isotypes of the human insulin receptor (HIR-A and HIR-B) follow different internalization kinetics. Biochem Biophys Res Commun 177:1013–1018PubMedCrossRefGoogle Scholar
  33. 33.
    Kosaki A, Pillay TS, Xu L, Webster NJ (1995) The B isoform of the insulin receptor signals more efficiently than the A isoform in HepG2 cells. J Biol Chem 270:20816–20823PubMedCrossRefGoogle Scholar
  34. 34.
    Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R et al (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 19:3278–3288PubMedGoogle Scholar
  35. 35.
    Yamaguchi Y, Flier JS, Yokota A, Benecke H, Backer JM et al (1991) Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells. Endocrinology 129:2058–2066PubMedCrossRefGoogle Scholar
  36. 36.
    Vella V, Pandini G, Sciacca L, Mineo R, Vigneri R et al (2002) A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer. J Clin Endocrinol Metab 87:245–254PubMedCrossRefGoogle Scholar
  37. 37.
    Leibiger B, Leibiger IB, Moede T, Kemper S, Kulkarni RN et al (2001) Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol Cell 7:559–570PubMedCrossRefGoogle Scholar
  38. 38.
    Ohlsson C, Kley N, Werner H, LeRoith D (1998) p53 regulates insulin-like growth factor-I (IGF-I) receptor expression and IGF-I-induced tyrosine phosphorylation in an osteosarcoma cell line: interaction between p53 and Sp1. Endocrinology 139:1101–1107PubMedCrossRefGoogle Scholar
  39. 39.
    Girnita L, Girnita A, Brodin B, Xie Y, Nilsson G et al (2000) Increased expression of insulin-like growth factor I receptor in malignant cells expressing aberrant p53: functional impact. Cancer Res 60:5278–5283PubMedGoogle Scholar
  40. 40.
    Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S et al (2008) The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 114:23–37PubMedCrossRefGoogle Scholar
  41. 41.
    Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E et al (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77PubMedCrossRefGoogle Scholar
  42. 42.
    Sun XJ, Wang LM, Zhang Y, Yenush L, Myers MG Jr et al (1995) Role of IRS-2 in insulin and cytokine signalling. Nature 377:173–177PubMedCrossRefGoogle Scholar
  43. 43.
    Lavan BE, Lane WS, Lienhard GE (1997) The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem 272:11439–11443PubMedCrossRefGoogle Scholar
  44. 44.
    Fantin VR, Sparling JD, Slot JW, Keller SR, Lienhard GE et al (1998) Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells. J Biol Chem 273:10726–10732PubMedCrossRefGoogle Scholar
  45. 45.
    Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330PubMedCrossRefGoogle Scholar
  46. 46.
    Lehr S, Kotzka J, Herkner A, Sikmann A, Meyer HE et al (2000) Identification of major tyrosine phosphorylation sites in the human insulin receptor substrate Gab-1 by insulin receptor kinase in vitro. Biochemistry 39:10898–10907PubMedCrossRefGoogle Scholar
  47. 47.
    Wick MJ, Dong LQ, Hu D, Langlais P, Liu F (2001) Insulin receptor-mediated p62dok tyrosine phosphorylation at residues 362 and 398 plays distinct roles for binding GTPase-activating protein and Nck and is essential for inhibiting insulin-stimulated activation of Ras and Akt. J Biol Chem 276:42843–42850PubMedCrossRefGoogle Scholar
  48. 48.
    Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S et al (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207PubMedCrossRefGoogle Scholar
  49. 49.
    Gustafson TA, He W, Craparo A, Schaub CD, O’Neill TJ (1995) Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol 15:2500–2508PubMedGoogle Scholar
  50. 50.
    Björnholm M, He AR, Attersand A, Lake S, Liu SC et al (2002) Absence of functional insulin receptor substrate-3 (IRS-3) gene in humans. Diabetologia 45:1697–702PubMedCrossRefGoogle Scholar
  51. 51.
    Virkamaki A, Ueki K, Kahn CR (1999) Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943PubMedCrossRefGoogle Scholar
  52. 52.
    Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M et al (1993) The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J 12:1929–1936PubMedGoogle Scholar
  53. 53.
    Myers MG Jr, Mendez R, Shi P, Pierce JH, Rhoads R et al (1998) The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J Biol Chem 273:26908–26914PubMedCrossRefGoogle Scholar
  54. 54.
    Sun XJ, Pons S, Asano T, Myers MG Jr, Glasheen E et al (1996) The Fyn tyrosine kinase binds Irs-1 and forms a distinct signaling complex during insulin stimulation. J Biol Chem 271:10583–10587PubMedCrossRefGoogle Scholar
  55. 55.
    Algenstaedt P, Antonetti DA, Yaffe MB, Kahn CR (1997) Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart. J Biol Chem 272:23696–23702PubMedCrossRefGoogle Scholar
  56. 56.
    Fei ZL, D’Ambrosio C, Li S, Surmacz E, Baserga R (1995) Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol Cell Biol 15:4232–4239PubMedGoogle Scholar
  57. 57.
    Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005(268):pe4PubMedCrossRefGoogle Scholar
  58. 58.
    Li J, DeFea K, Roth RA (1999) Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway. J Biol Chem 274:9351–9356PubMedCrossRefGoogle Scholar
  59. 59.
    Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM et al (2005) Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med 11:567–571PubMedCrossRefGoogle Scholar
  60. 60.
    Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S et al (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166:213–223PubMedCrossRefGoogle Scholar
  61. 61.
    Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054PubMedCrossRefGoogle Scholar
  62. 62.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336PubMedCrossRefGoogle Scholar
  63. 63.
    Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE (2004) Insulin resistance due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem 279:35298–35305PubMedCrossRefGoogle Scholar
  64. 64.
    Craparo A, Freund R, Gustafson TA (1997) 14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J Biol Chem 272:11663–11669PubMedCrossRefGoogle Scholar
  65. 65.
    Tirosh A, Potashnik R, Bashan N, Rudich A (1999) Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem 274:10595–10602PubMedCrossRefGoogle Scholar
  66. 66.
    Pederson TM, Kramer DL, Rondinone CM (2001) Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 50:24–31PubMedCrossRefGoogle Scholar
  67. 67.
    Giraud J, Leshan R, Lee YH, White MF (2004) Nutrient-dependent and insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302 correlates with increased insulin signaling. J Biol Chem 279:3447–3454PubMedCrossRefGoogle Scholar
  68. 68.
    Furukawa N, Ongusaha P, Jahng WJ, Araki K, Choi CS et al (2005) Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab 2:119–129PubMedCrossRefGoogle Scholar
  69. 69.
    Paz K, Liu YF, Shorer H, Hemi R, LeRoith D et al (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 274:28816–28822PubMedCrossRefGoogle Scholar
  70. 70.
    Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P et al (2001) Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 15:2099–2111PubMedCrossRefGoogle Scholar
  71. 71.
    Araki E, Lipes MA, Patti M-E, Bruning JC, Haag BL III et al (1994) Alternative pathway of insulin signlaing in targeted disruption of the IRS-1 gene. Nature 372:186–190PubMedCrossRefGoogle Scholar
  72. 72.
    Kubota N, Terauchi Y, Tobe K, Yano W, Suzuki R et al (2004) Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. J Clin Invest 114:917–927PubMedGoogle Scholar
  73. 73.
    Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM et al (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904PubMedCrossRefGoogle Scholar
  74. 74.
    Tseng YH, Butte AJ, Kokkotou E, Yechoor VK, Taniguchi CM et al (2005) Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol 7:601–611PubMedCrossRefGoogle Scholar
  75. 75.
    Miki H, Yamauchi T, Suzuki R, Komeda K, Tsuchida A et al (2001) Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol 21:2521–2532PubMedCrossRefGoogle Scholar
  76. 76.
    Chang Q, Li Y, White MF, Fletcher JA, Xiao S (2002) Constitutive activation of insulin receptor substrate 1 is a frequent event in human tumors: therapeutic implications. Cancer Res 62:6035–6038PubMedGoogle Scholar
  77. 77.
    Koda M, Sulkowska M, Kanczuga-Koda L, Sulkowski S (2005) Expression of insulin receptor substrate 1 in primary breast cancer and lymph node metastases. J Clin Pathol 58:645–649PubMedCrossRefGoogle Scholar
  78. 78.
    Jackson JG, White MF, Yee D (1998) Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells. J Biol Chem 273:9994–10003PubMedCrossRefGoogle Scholar
  79. 79.
    Rocha RL, Hilsenbeck SG, Jackson JG, VanDenBerg CL, Weng C et al (1997) Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res 3:103–109PubMedGoogle Scholar
  80. 80.
    Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA et al (2006) Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 26:9302–9314PubMedCrossRefGoogle Scholar
  81. 81.
    Asano T, Yao Y, Shin S, McCubrey J, Abbruzzese JL et al (2005) Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res 65:9164–9168PubMedCrossRefGoogle Scholar
  82. 82.
    Longato L, de la Monte S, Kuzushita N, Horimoto M, Rogers AB et al (2009) Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver. Hepatology 49:1935–1943PubMedCrossRefGoogle Scholar
  83. 83.
    Tanaka S, Wands JR (1996) Insulin receptor substrate 1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor beta1-induced apoptosis. Cancer Res 56:3391–3394PubMedGoogle Scholar
  84. 84.
    Boissan M, Beurel E, Wendum D, Rey C, Lecluse Y et al (2005) Overexpression of insulin receptor substrate-2 in human and murine hepatocellular carcinoma. Am J Pathol 167:869–877PubMedCrossRefGoogle Scholar
  85. 85.
    Tanaka S, Wands JR (1996) A carboxy-terminal truncated insulin receptor substrate-1 dominant negative protein reverses the human hepatocellular carcinoma malignant phenotype. J Clin Invest 98:2100–2108PubMedCrossRefGoogle Scholar
  86. 86.
    Knowlden JM, Jones HE, Barrow D, Gee JM, Nicholson RI et al (2008) Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance. Breast Cancer Res Treat 111:79–91PubMedCrossRefGoogle Scholar
  87. 87.
    Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516PubMedCrossRefGoogle Scholar
  88. 88.
    Guix M, Faber AC, Wang SE, Olivares MG, Song Y et al (2008) Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 118:2609–2619PubMedGoogle Scholar
  89. 89.
    Nagle JA, Ma Z, Byrne MA, White MF, Shaw LM (2004) Involvement of insulin receptor substrate 2 in mammary tumor metastasis. Mol Cell Biol 24:9726–9735PubMedCrossRefGoogle Scholar
  90. 90.
    Szabolcs M, Keniry M, Simpson L, Reid LJ, Koujak S et al (2009) Irs2 inactivation suppresses tumor progression in Pten+/- mice. Am J Pathol 174:276–286PubMedCrossRefGoogle Scholar
  91. 91.
    Laustsen PG, Michael MD, Crute BE, Cohen SE, Ueki K et al (2002) Lipoatrophic diabetes in Irs1(−/−)/Irs3(−/−) double knockout mice. Genes Dev 16:3213–3222PubMedCrossRefGoogle Scholar
  92. 92.
    Karrman K, Kjeldsen E, Lassen C, Isaksson M, Davidsson J et al (2009) The t(X;7)(q22;q34) in paediatric T-cell acute lymphoblastic leukaemia results in overexpression of the insulin receptor substrate 4 gene through illegitimate recombination with the T-cell receptor beta locus. Br J Haematol 144:546–551PubMedCrossRefGoogle Scholar
  93. 93.
    Fantin VR, Wang Q, Lienhard GE, Keller SR (2000) Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am J Physiol Endocrinol Metab 278:E127–E133PubMedGoogle Scholar
  94. 94.
    Taniguchi CM, Ueki K, Kahn R (2005) Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 115:718–727PubMedGoogle Scholar
  95. 95.
    Sun XJ, Pons S, Wang LM, Zhang Y, Yenush L et al (1997) The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action. Mol Endocrinol 11:251–262PubMedCrossRefGoogle Scholar
  96. 96.
    Inoue G, Cheatham B, Emkey R, Kahn CR (1998) Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem 273:11548–11555PubMedCrossRefGoogle Scholar
  97. 97.
    Sun H, Tu X, Prisco M, Wu A, Casiburi I et al (2003) Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2. Mol Endocrinol 17:472–486PubMedCrossRefGoogle Scholar
  98. 98.
    Ogihara T, Shin BC, Anai M, Katagiri H, Inukai K et al (1997) Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-1 via its association with phosphatidylinositol 3-kinase in skeletal muscle cells. J Biol Chem 272:12868–12873PubMedCrossRefGoogle Scholar
  99. 99.
    Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E (1996) Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J Biol Chem 271:5980–5983PubMedCrossRefGoogle Scholar
  100. 100.
    D’Ambrosio C, Keller SR, Morrione A, Lienhard GE, Baserga R et al (1995) Transforming potential of the insulin receptor substrate 1. Cell Growth Differ 6:557–562PubMedGoogle Scholar
  101. 101.
    DeAngelis T, Chen J, Wu A, Prisco M, Baserga R (2006) Transformation by the simian virus 40 T antigen is regulated by IGF-I receptor and IRS-1 signaling. Oncogene 25:32–42PubMedGoogle Scholar
  102. 102.
    Tseng YH, Kriauciunas KM, Kokkotou E, Kahn CR (2004) Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol Cell Biol 24:1918–1929PubMedCrossRefGoogle Scholar
  103. 103.
    Myers MG Jr, Backer JM, Sun XJ, Shoelson S, Hu P et al (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci USA 89:10350–10354PubMedCrossRefGoogle Scholar
  104. 104.
    Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J et al (1994) Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp 70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 14:4902–4911PubMedGoogle Scholar
  105. 105.
    Shepherd PR, Withers DJ, Siddle K (1998) Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J 333(Pt 3):471–490PubMedGoogle Scholar
  106. 106.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269PubMedCrossRefGoogle Scholar
  107. 107.
    Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P et al (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281:2042–2045PubMedCrossRefGoogle Scholar
  108. 108.
    Woodgett JR (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 17:150–157PubMedCrossRefGoogle Scholar
  109. 109.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRefGoogle Scholar
  110. 110.
    Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9:125–128PubMedCrossRefGoogle Scholar
  111. 111.
    Nakashima N, Sharma PM, Imamura T, Bookstein R, Olefsky JM (2000) The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J Biol Chem 275:12889–12895PubMedCrossRefGoogle Scholar
  112. 112.
    Yao YJ, Ping XL, Zhang H, Chen FF, Lee PK et al (1999) PTEN/MMAC1 mutations in hepatocellular carcinomas. Oncogene 18:3181–3185PubMedCrossRefGoogle Scholar
  113. 113.
    Schmitz KJ, Wohlschlaeger J, Lang H, Sotiropoulos GC, Malago M et al (2008) Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol 48:83–90PubMedCrossRefGoogle Scholar
  114. 114.
    Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH et al (1997) P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA 94:4330–4335PubMedCrossRefGoogle Scholar
  115. 115.
    Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532PubMedCrossRefGoogle Scholar
  116. 116.
    Rizo J, Sudhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882PubMedCrossRefGoogle Scholar
  117. 117.
    Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE et al (2007) The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318:1744–1748PubMedCrossRefGoogle Scholar
  118. 118.
    Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA et al (1998) Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 18:1379–1387PubMedGoogle Scholar
  119. 119.
    Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A et al (1997) Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276:1848–1850PubMedCrossRefGoogle Scholar
  120. 120.
    Zhao JJ, Liu Z, Wang L, Shin E, Loda MF et al (2005) The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 102:18443–18448PubMedCrossRefGoogle Scholar
  121. 121.
    Miyake T, Yoshino K, Enomoto T, Takata T, Ugaki H et al (2008) PIK3CA gene mutations and amplifications in uterine cancers, identified by methods that avoid confounding by PIK3CA pseudogene sequences. Cancer Lett 261:120–126PubMedCrossRefGoogle Scholar
  122. 122.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554PubMedCrossRefGoogle Scholar
  123. 123.
    Wu G, Xing M, Mambo E, Huang X, Liu J et al (2005) Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Res 7:R609–R616PubMedCrossRefGoogle Scholar
  124. 124.
    Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML et al (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang A, Maner S, Betz R, Angstrom T, Stendahl U et al (2002) Genetic alterations in cervical carcinomas: frequent low-level amplifications of oncogenes are associated with human papillomavirus infection. Int J Cancer 101:427–433PubMedCrossRefGoogle Scholar
  126. 126.
    Lee JW, Soung YH, Kim SY, Lee HW, Park WS et al (2005) PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 24:1477–1480PubMedCrossRefGoogle Scholar
  127. 127.
    Guo XN, Rajput A, Rose R, Hauser J, Beko A et al (2007) Mutant PIK3CA-bearing colon cancer cells display increased metastasis in an orthotopic model. Cancer Res 67:5851–5858PubMedCrossRefGoogle Scholar
  128. 128.
    McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar
  129. 129.
    Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M et al (2007) Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317:239–242PubMedCrossRefGoogle Scholar
  130. 130.
    Denley A, Kang S, Karst U, Vogt PK (2008) Oncogenic signaling of class I PI3K isoforms. Oncogene 27:2561–2574PubMedCrossRefGoogle Scholar
  131. 131.
    Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356PubMedCrossRefGoogle Scholar
  132. 132.
    Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S et al (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370PubMedCrossRefGoogle Scholar
  133. 133.
    Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem 274:10963–10968PubMedCrossRefGoogle Scholar
  134. 134.
    Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome 13:169–172PubMedGoogle Scholar
  135. 135.
    Asano T, Kanda A, Katagiri H, Nawano M, Ogihara T et al (2000) p110beta is up-regulated during differentiation of 3T3-L1 cells and contributes to the highly insulin-responsive glucose transport activity. J Biol Chem 275:17671–17676PubMedCrossRefGoogle Scholar
  136. 136.
    Siddhanta U, McIlroy J, Shah A, Zhang Y, Backer JM (1998) Distinct roles for the p110alpha and hVPS34 phosphatidylinositol 3’-kinases in vesicular trafficking, regulation of the actin cytoskeleton, and mitogenesis. J Cell Biol 143:1647–1659PubMedCrossRefGoogle Scholar
  137. 137.
    Jia S, Liu Z, Zhang S, Liu P, Zhang L et al (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454:776–779PubMedGoogle Scholar
  138. 138.
    Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747PubMedCrossRefGoogle Scholar
  139. 139.
    Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ et al (2008) Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453:662–666PubMedCrossRefGoogle Scholar
  140. 140.
    Wee S, Wiederschain D, Maira SM, Loo A, Miller C et al (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA 105:13057–13062PubMedCrossRefGoogle Scholar
  141. 141.
    Luo J, Cantley LC (2005) The negative regulation of phosphoinositide 3-kinase signaling by p85 and it’s implication in cancer. Cell Cycle 4:1309–1312PubMedCrossRefGoogle Scholar
  142. 142.
    Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619PubMedCrossRefGoogle Scholar
  143. 143.
    Antonetti DA, Algenstaedt P, Kahn CR (1996) Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol Cell Biol 16:2195–2203PubMedGoogle Scholar
  144. 144.
    Ueki K, Yballe CM, Brachmann SM, Vicent D, Watt JM et al (2002) Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci USA 99:419–424PubMedCrossRefGoogle Scholar
  145. 145.
    Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B (2007) Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Natl Acad Sci USA 104:7809–7814PubMedCrossRefGoogle Scholar
  146. 146.
    Zhang L, Huang J, Yang N, Greshock J, Liang S et al (2007) Integrative genomic analysis of phosphatidylinositol 3’-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res 13:5314–5321PubMedCrossRefGoogle Scholar
  147. 147.
    Shekar SC, Wu H, Fu Z, Yip SC, Nagajyothi F et al (2005) Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit. J Biol Chem 280:27850–27855PubMedCrossRefGoogle Scholar
  148. 148.
    Jimenez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E et al (1998) Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 17:743–753PubMedCrossRefGoogle Scholar
  149. 149.
    Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP et al (2001) The phosphatidylinositol 3’-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61:7426–7429PubMedGoogle Scholar
  150. 150.
    Almind K, Delahaye L, Hansen T, Van Obberghen E, Pedersen O et al (2002) Characterization of the Met326Ile variant of phosphatidylinositol 3-kinase p85alpha. Proc Natl Acad Sci USA 99:2124–2128PubMedCrossRefGoogle Scholar
  151. 151.
    Li L, Plummer SJ, Thompson CL, Tucker TC, Casey G (2008) Association between phosphatidylinositol 3-kinase regulatory subunit p85alpha Met326Ile genetic polymorphism and colon cancer risk. Clin Cancer Res 14:633–637PubMedCrossRefGoogle Scholar
  152. 152.
    Richard F, Pacyna-Gengelbach M, Schluns K, Fleige B, Winzer KJ et al (2000) Patterns of chromosomal imbalances in invasive breast cancer. Int J Cancer 89:305–310PubMedCrossRefGoogle Scholar
  153. 153.
    Tavassoli M, Steingrimsdottir H, Pierce E, Jiang X, Alagoz M et al (1996) Loss of heterozygosity on chromosome 5q in ovarian cancer is frequently accompanied by TP53 mutation and identifies a tumour suppressor gene locus at 5q13.1-21. Br J Cancer 74:115–119PubMedCrossRefGoogle Scholar
  154. 154.
    Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J (2003) Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosom Cancer 36:292–302PubMedCrossRefGoogle Scholar
  155. 155.
    Achille A, Baron A, Zamboni G, Di Pace C, Orlandini S et al (1998) Chromosome 5 allelic losses are early events in tumours of the papilla of Vater and occur at sites similar to those of gastric cancer. Br J Cancer 78:1653–1660PubMedCrossRefGoogle Scholar
  156. 156.
    Katoh H, Shibata T, Kokubu A, Ojima H, Loukopoulos P et al (2005) Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J Hepatol 43:863–874PubMedCrossRefGoogle Scholar
  157. 157.
    Mauvais-Jarvis F, Ueki K, Fruman DA, Hirshman MF, Sakamoto K et al (2002) Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 109:141–149PubMedGoogle Scholar
  158. 158.
    Taniguchi CM, Tran TT, Kondo T, Luo J, Ueki K et al (2006) Phosphoinositide 3-kinase regulatory subunit p85alpha suppresses insulin action via positive regulation of PTEN. Proc Natl Acad Sci USA 103:12093–12097PubMedCrossRefGoogle Scholar
  159. 159.
    Luo J, Sobkiw CL, Logsdon NM, Watt JM, Signoretti S et al (2005) Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/- mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Proc Natl Acad Sci USA 102:10238–10243PubMedCrossRefGoogle Scholar
  160. 160.
    Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC et al (2002) Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol 22:965–977PubMedCrossRefGoogle Scholar
  161. 161.
    Barbour LA, Mizanoor Rahman S, Gurevich I, Leitner JW, Fischer SJ et al (2005) Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem 280:37489–37494PubMedCrossRefGoogle Scholar
  162. 162.
    Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC (2005) The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170(3):455–464PubMedCrossRefGoogle Scholar
  163. 163.
    Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928PubMedCrossRefGoogle Scholar
  164. 164.
    Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MedicineJoslin Diabetes Center, Harvard Medical SchoolBostonUSA
  2. 2.Division of Signal Transduction, Department of MedicineBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations