Proton-fountain Electric-field-assisted Nanolithography (PEN)



This chapter describes the implementation of Proton-fountain Electric-field-assisted Nanolithography (PEN) as a potential tool for fabricating nanostructures by exploiting the properties of stimuli-responsive materials. The merits of PEN are demonstrated using poly(4-vinylpyridine) (P4VP) films, whose structural (swelling) response is triggered by the delivery of protons from an acidic fountain tip into the polymer substrate. Despite the probably many intervening factors affecting the fabrication process, PEN underscores the improved reliability in the pattern formation when using an external electric field (with voltage values of up to 5 V applied between the probe and the sample) as well as when controlling the environmental humidity conditions. PEN thus expands the applications of P4VP as a stimuli-responsive material into the nanoscale domain, which could have technological impact on the fabrication of memory and sensing devices as well as in the fabrication of nanostructures that closely mimic natural bio-environments. The reproducibility and reversible character of the PEN fabrication process offers opportunities to also use these films as test bed for studying fundamental (thermodynamic and kinetic) physical properties of responsive materials at the nanoscale level.


Responsive materials P4VP Nanolithography Swelling Polymer film pH responsive Erasable patterns PEN Biomimetic materials DPN Hydrogels Osmotic pressure Entropy of mixing Protonation 


  1. 1.
    K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nat. Nanotechnol. 2, 145 (2007).CrossRefGoogle Scholar
  2. 2.
    R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, “Dip-Pen nanolithography,” Science 283, 661 (1999).CrossRefGoogle Scholar
  3. 3.
    I. Tokarev and S. Minko, “Stimuli-responsive hydrogel thin films,” Soft Matter 5, 511 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Anson, “Membrane protein biophysics,” Nature 459, 343 (2009).CrossRefGoogle Scholar
  5. 5.
    C. Ainsworth, “Stretching the imagination,” Nature 456, 696 (2008).CrossRefGoogle Scholar
  6. 6.
    B. Bhushan, “Biomimetics: lessons from nature-an overview,” Phil. Trans. R. Soc. A 367, 1445 (2009).CrossRefGoogle Scholar
  7. 7.
    I. Tokarev, M. Motornov, and S. Minko;, “Molecular-engineered stimuli-responsive thin polymer film: a platform for the development of integrated multifunctional intelligent materials,” J. Mater. Chem. 19, 6932 (2009).CrossRefGoogle Scholar
  8. 8.
    C. Cofield, “Cell is mechanical device,” Am. Phys. Soc., APS News, Series II, 19, 4 (June 2010).Google Scholar
  9. 9.
    C. Wu, Y. Li, J. H. Haga, R. Kaunas, J. Chiu, F. Su, S. Usami, and S. Chien, “Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micro patterned anisotropic geometry,” PNAS 104, 1254 (2007).CrossRefGoogle Scholar
  10. 10.
    C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death,” Science 276, 1425 (1997).CrossRefGoogle Scholar
  11. 11.
    M. A. Greenfield, J. R. Hoffman, M. Olvera de la Cruz, and S. I. Stupp, “Tunable mechanics of peptide nanofiber gels,” Langmuir 26, 3641 (2010).CrossRefGoogle Scholar
  12. 12.
    M. M. Stevens and J. H. George, “Exploring and engineering the cell surface interface,” Science 310, 1135 (2005).CrossRefGoogle Scholar
  13. 13.
    S. Maeda, Y. Hara, T. Sakai, R. Yoshida, and S. Hashimoto, “Self-walking gel, Adv. Mater. 19, 3480 (2007).CrossRefGoogle Scholar
  14. 14.
    T. K. Tam, M. Ornatska, M. Pita, S. Minko, and E. Katz, “Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications,” J. Phys. Chem. C 112, 8438 (2008).CrossRefGoogle Scholar
  15. 15.
    D. Wang, I. Lagzi, P. J. Wesson, and B. A. Grzybowski, “Rewritable and pH-sensitive micropatterns based on nanoparticle ‘Inks’,” Small 6, 2114 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Ruhe, M. Ballauff, M. Biesalski, P. Dziezok, F. Grohn, D. Johannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T. Stephan, D. Usov, and H. Zhang, “Polyelectrolyte brushes” in: “Polyelectrolytes with Defined Molecular Architecture,” M. Schmidt Ed. Adv. Polym. Sci. 165, 79 (2004).Google Scholar
  17. 17.
    C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mater. Chem. 17, 1543 (2007).CrossRefGoogle Scholar
  18. 18.
    R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano, “Comb-type grafted hydrogels with rapid deswelling response to temperature changes,” Nature 374, 240 (1995).CrossRefGoogle Scholar
  19. 19.
    T. Suzuki, S. Shinkai, and K. Sada, “Supramolecular crosslinked linear poly(trimethylene iminium trifluorosulfonimide) polymer gels sensitive to light and thermal stimuli,” Adv. Mater. 18, 1043 (2006).CrossRefGoogle Scholar
  20. 20.
    B. A. Evans, A. R. Shields, R. Lloyd Carroll, S. Washburn, M. R. Falvo, and R. Superfine, “Magnetically actuated nanorod arrays as biomimetic cilia,” Nano Lett. 7, 1428 (2007).CrossRefGoogle Scholar
  21. 21.
    O. Ikkala and G. Brinke, “Functional materials based on self assembly of polymeric supramolecules,” Science 295, 2407 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Kaholek, W. K. Lee, B. LaMattina, K. C. Caster, and S. Zauscher, “Fabrication of stimulus-responsive nanopatterned polymer brushes by scanning-probe lithography,” Nano Lett. 4, 373 (2004).CrossRefGoogle Scholar
  23. 23.
    X. Liu, S. Guo, and C. A. Mirkin, “Surface and site-specific ring-opening metathesis polymerization initiated by dip-pen nanolithography,” Angew. Chem. Int. Ed. 42, 4785 (2003).CrossRefGoogle Scholar
  24. 24.
    Y. Okawa and M. Aono, “Nanoscale control of chain polymerization,” Nature 409, 683 (2001).CrossRefGoogle Scholar
  25. 25.
    S. P. Sullivan, A. Schnieders, S. K. Mbugua, and T. P. Beebe Jr., “Controlled polymerization of substituted diacetylene self-organized monolayers confined in molecule corrals,” Langmuir 21, 1322 (2005).CrossRefGoogle Scholar
  26. 26.
    Y. Okawa, D. Takajo, S. Tsukamoto, T. Hasegawa, and M. Aono, “Atomic force microscopy and theoretical investigation of the lifted-up conformation of polydiacetylene on a graphite substrate,” Soft Matter 4, 1041 (2008).CrossRefGoogle Scholar
  27. 27.
    P. Calvert, “Hydrogels for soft machines,” Adv. Mater. 21, 743 (2009).CrossRefGoogle Scholar
  28. 28.
    P. J. Flory and J. Rehner, “Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity,” J. Chem. Phys. 11, 512 (1943).CrossRefGoogle Scholar
  29. 29.
    P. J. Flory and J. Rehner, “Statistical mechanics of cross-linked polymer networks II. Swelling,” J. Chem. Phys. 11, 521 (1943).CrossRefGoogle Scholar
  30. 30.
    K. Huang, “Statistical Mechanics,” Wiley, New York, 2nd Ed. (1987).MATHGoogle Scholar
  31. 31.
    F. P. Chinard and T. Enns, “Osmotic pressure,” Science 124, 472 (1956).CrossRefGoogle Scholar
  32. 32.
    P. J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Oxford (1969).Google Scholar
  33. 33.
    Y. Osada and J. Gong, “Soft and wet materials: Polymer gels,” Adv. Mater. 10, 827 (1998).CrossRefGoogle Scholar
  34. 34.
    L. D. Landau and E. M. Lifshitz, “Statistical Physics”, Elsevier, New York, 3rd Ed., Part 1, pp. 72, 267 (2006).Google Scholar
  35. 35.
    P. J. Flory, “Thermodynamics of high polymer solutions,” J. Chem. Phys. 10, 51 (1942).CrossRefGoogle Scholar
  36. 36.
    P. J. Flory, “Statistical mechanics of swelling of network structures,” J. Chem. Phys. 18, 108 (1950).CrossRefGoogle Scholar
  37. 37.
    W. Hu and D. Frenkel, “Lattice-model study of the thermodynamic interplay of polymer crystallization and liquid–liquid demixing,” J. Chem. Phys. 118, 10343 (2003).CrossRefGoogle Scholar
  38. 38.
    A. Yu. Grosberg and A. R. Khokhlov, “Giant Molecules. Here, There and Everywhere,” Academic Press, New York (1997).Google Scholar
  39. 39.
    D. Woo, “Spectroscopic Ellipsometry Studies of Polymers on Silicon Wafer,” Thesis for the Master degree in Physics, Portland State University, Portland, OR (2009).Google Scholar
  40. 40.
    C. Maedler, H. Graaf, S. Chada, M. Yan, and A. La Rosa, “Nano-structure formation driven by local protonation of polymer thin films”, Proc. SPIE, 7364, 736409-1 (2009).Google Scholar
  41. 41.
    X. Wang, “Characterization of Mesoscopic Fluid-Like Films with the Novel Shear-Force/Acoustic Microscopy,” Thesis for the Master degree in Physics, Portland State University, Portland, OR (2010).Google Scholar
  42. 42.
    X. Wang, X. Wang, R. Fernandez, L. Ocola, M. Yan, and A. La Rosa, “Electric field-assisted dip-pen nanolithography on poly(4-vinyl pyridine) films,” ACS Appl. Mater. Interface 2, 2904–2909 (2010).CrossRefGoogle Scholar
  43. 43.
    J. Lahann, S. Mitragotri, T. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, and R. Langer, “A reversibly switching surface,” Science 299, 371 (2003).CrossRefGoogle Scholar
  44. 44.
    I. S. Lokuge and P. W. Bohn, “Voltage-tunable volume transitions in nanoscale films of poly(hydroxyethyl methacrylate) surfaces grafted onto gold,” Langmuir 21 , 1979 (2005).CrossRefGoogle Scholar
  45. 45.
    T. Tanaka, I. Nishio, S. Sun, and S. Ueno-Nishio, “Collapse of gels in an electric field,” Science, 218, 467 (1982).CrossRefGoogle Scholar
  46. 46.
    M. Annakaand and T. Tanaka, “Multiple phases of polymer gels,” Nature 355, 430 (1992).CrossRefGoogle Scholar
  47. 47.
    A. Matsuyama, “Volume phase transitions of smectic gels,” Phys. Rev. E 79, 051704 (2009).CrossRefGoogle Scholar
  48. 48.
    W. Xue, and I. W. Hamley, “Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer,” Polymer 43, 3069 (2002).CrossRefGoogle Scholar
  49. 49.
    A. Richter, G. Paschew, S. Klatt, J. Lienig, K. Arndt, and H. P. Adler, “Review on hydrogel-based pH sensors and microsensors,” Sensors 8, 561 (2008).CrossRefGoogle Scholar
  50. 50.
    T. Tanaka, D. Fillmore, S.-T. Sun, I. Nishio, G. Swislow, and A. Shah, “Phase transitions in ionic gels,” Phys. Rev. Lett. 45, 1636 (1980).CrossRefGoogle Scholar
  51. 51.
    A. Suzuki and T. Tanaka, “Phase transition in polymer gels induced by visible light,” Nature 346, 345 (1990).CrossRefGoogle Scholar
  52. 52.
    F. Ilmain, T. Tanaka, and E. Kokufuta, “Volume transition in a gel driven by hydrogen bonding,” Nature 349, 400 (1991).CrossRefGoogle Scholar
  53. 53.
    S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178 (2000).CrossRefGoogle Scholar
  54. 54.
    M. Shibayama and T. Tanaka, “Small-angle neutron scattering study on weakly charged temperature sensitive polymer gels,” J. Chem. Phys. 97, 6842 (1992).CrossRefGoogle Scholar
  55. 55.
    S. Hong and C. A. Mirkin, “A nanoplotter with both parallel and serial writing capabilities,” Science 288, 1808 (2000).CrossRefGoogle Scholar
  56. 56.
    C. Maedler, S. Chada, X. Cui, M. Taylor, M. Yan, and A. La Rosa, “Creation of nanopatterns by local protonation of P4VP via dip pen nanolithography.” J. Appl. Phys. 104, 014311 (2008).CrossRefGoogle Scholar
  57. 57.
    C. Maedler, “Applying Different Modes of Atomic Force Microscopy for the Manipulation and Characterization of Spatially Localized Structures and Charges,” Diploma Thesis for the academic degree of Diplom Physiker; Faculty of Natural Sciences Institute of Physics, Chemnitz University of Technology (2009).Google Scholar
  58. 58.
    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
  59. 59.
    M. Schenk, M. Futing, and R. Reichelt, “Direct visualization of the dynamic behavior of water meniscus by scanning electron microscopy,” J. Appl. Phys. 84, 4880 (1998).CrossRefGoogle Scholar
  60. 60.
    L. M. Demers, D. S. Ginger, Z. Li, S.-J. Park, S.-W. Chung, and C. A. Mirkin, “Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography,” Science 296,1836 (2002).CrossRefGoogle Scholar
  61. 61.
    S. Rozhok, P. Sun, R. Piner, M. Lieberman, and C. A. Mirkin, “AFM study of water meniscus formation between an aFM tip and NaCl substrate,” J. Phys. Chem. B 108, 7814 (2004).CrossRefGoogle Scholar
  62. 62.
    P. E. Sheehan and L. J. Whitman, “Thiol diffusion and the role of humidity in ‘dip pen nanolithography’,” Phys. Rev. Lett. 88, 156104 (2002).CrossRefGoogle Scholar
  63. 63.
    Z. Zheng, M. Yang, and B. Zhang, “Reversible nanopatterning on self-assembled monolayers on gold,” J. Phys. Chem. C 112, 6597 (2008).CrossRefGoogle Scholar
  64. 64.
    J.-W. Jang, D. Maspoch, T. Fujigaya, and C. A. Mirkin, “A ‘molecular eraser’ for dip-pen nanolithography,” Small 3, 600 (2007).CrossRefGoogle Scholar
  65. 65.
    Y. Li, B. W. Maynor, and J. Liu, “Electrochemical AFM ‘Dip-pen’ nanolithography,” J. Am. Chem. Soc. 123, 2105 (2001).CrossRefGoogle Scholar
  66. 66.
    F. C. Simeone, C. Albonetti, and M. Cavallini, “Progress in micro- and nanopatterning via electrochemical lithography,” J. Phys. Chem. C 113, 18987 (2009).CrossRefGoogle Scholar
  67. 67.
    R. Maoz, E. Frydman, S. R. Cohen, and J. Sagiv, “’Constructive nanolithography’: inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-organic surface structures: a generic approach,” Adv. Mater. 12, 725 (2000).CrossRefGoogle Scholar
  68. 68.
    Z. Zheng, M. Yang, and B. Zhang, “Constructive nanolithography by chemically modified tips: nanoelectrochemical patterning on SAMs/Au,” J. Phys. Chem. C 114, 19220 (2010).CrossRefGoogle Scholar
  69. 69.
    Y. Cai and B. M. Ocko, “Electro pen nanolithography,” J. Am. Chem. Soc. 127, 16287 (2005).CrossRefGoogle Scholar
  70. 70.
    D. Chowdhury, R. Maoz, and J. Sagiv, “Wetting driven self-assembly as a new approach to template-guided fabrication of metal nanopatterns,” Nano Lett. 7, 1770 (2007).CrossRefGoogle Scholar
  71. 71.
    A. Zeira, D. Chowdhury, S. Hoeppener, S. T. Liu, J. Berson, S. R. Cohen, R. Maoz, and J. Sagiv, “Patterned organosilane monolayers as lyophobic−lyophilic guiding templates in surface self-assembly: monolayer self-assembly versus wetting-driven self-assembly,” J. Langmuir 25, 13984 (2009).CrossRefGoogle Scholar
  72. 72.
    P. Yao, G. J. Schneider, J. Murakowski, and D. W. Prather, “Chemical lithography,” J. Vac. Sci. Technol. B 24, 2553 (2006).CrossRefGoogle Scholar
  73. 73.
    K. Shanmuganathan, J. R. Capadona, S. J. Rowan, and C. Weder, “Stimuli-responsive mechanically adaptive polymer nanocomposites,” ACS Appl. Mater. Interface 2, 165 (2010).CrossRefGoogle Scholar
  74. 74.
    R. Klajn, P. J. Wesson, K. J. M. Bishop, and B. A. Grzybowski, “Writing self-erasing images using metastable nanoparticle ‘Inks’,” Angew. Chem. Int. Ed. 48, 7035 (2009).CrossRefGoogle Scholar
  75. 75.
    S. V. Kalinin and N. Balk, “Local Electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives,” Adv. Mater. 22, E193–E209 (2010).CrossRefGoogle Scholar
  76. 76.
    A. A. Tseng, A. Notargiacomo, and T. P. Chen, “Nanofabrication by scanning probe microscope lithography: a review,” J. Vac. Sci. Technol. B 23, 877 (2005).CrossRefGoogle Scholar
  77. 77.
    A. A. Tseng, A. Notargiacomo, T. P. Chen, and Y. Liu, “Profile uniformity of overlapped oxide dots induced by atomic force microscopy,” J. Nanosci. Nanotechnol. 10, 4390 (2010).CrossRefGoogle Scholar
  78. 78.
    K. B. Jinesh and J. W. M. Frenken, “Capillary condensation in atomic scale friction: how water acts like a glue,” PRL 96, 166103 (2006).CrossRefGoogle Scholar
  79. 79.
    P. J. Feibelman, “The first wetting layer on a solid,” Physics Today 63, 34 (2010).CrossRefGoogle Scholar
  80. 80.
    E. Kapetanakis, A. M. Douvas, D. Velessiotis, E. Makarona, P. Argitis, N. Glezos, and P. Normand, “Hybrid organic–inorganic materials for molecular proton memory devices,” Org. Electron. 10, 711 (2009).CrossRefGoogle Scholar
  81. 81.
    E. Kapetanakis, A. M. Douvas, D. Velessiotis, E. Makarona, P. Argitis, N. Glezos, and P. Normand, “Molecular storage elements for proton memory devices,” Adv. Mater. 20, 4568 (2008).CrossRefGoogle Scholar
  82. 82.
    S. M. Haile, D. A. Boysen, C. R. Chisholm, and R. B. Merle, “Solid acids as fuel cell electrolytes,” Nature 410, 910 (2001).CrossRefGoogle Scholar
  83. 83.
    T. Norby, “The promise of protonics,” Nature 410, 877 (2001).CrossRefGoogle Scholar
  84. 84.
    P. M. Gilbert, K. L. Havenstrite, K. E. G. Magnusson, A. Sacco, N. A. Leonardi, P. Kraft, N. K. Nguyen, S. Thrun, M. P. Lutolf, and H. M. Blau, “Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture,” Science 329, 1078 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsPortland State UniversityPortlandUSA
  2. 2.Department of ChemistryPortland State UniversityPortlandUSA

Personalised recommendations