• Mark Burgin
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


In this chapter we introduce real hypernumbers and study their properties in Sect. 2.1. Algebraic properties are explored in Sect. 2.2, and topological properties are investigated in Sect. 2.3. In a similar way, it is possible to build complex hypernumbers and study their properties (Burgin 2002, 2004, 2010).


Real Number Rational Number Topological Property Algebraic Property Real Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexandroff, P.: Elementary concepts of topology. Dover Publications, New York (1961)MATHGoogle Scholar
  2. Borel, E.: Leçons sur la Théorie des Fonctions, 3rd edn. Gauthier-Villars, Paris (1927)MATHGoogle Scholar
  3. Borel, E.: Les Nombre Inaccessible. Gauthier-Villiars, Paris (1952)Google Scholar
  4. Bourbaki, N.: Topological vector spaces: elements of mathematics. Springer, Berlin (1987)MATHCrossRefGoogle Scholar
  5. Burgin, M.: Hypermeasures and hyperintegration. Not. Nat. Acad. Sci. Ukr. (in Russian and Ukrainian) 6, 10–13 (1990)Google Scholar
  6. Burgin, M.: Extrafunctions, distributions, and nonsmooth analysis. Mathematics Report Series, MRS Report. 1 Feb 2001, p. 47. University of California, Los Angeles (2001)Google Scholar
  7. Burgin, M.: Theory of hypernumbers and extrafunctions: functional spaces and differentiation. Discrete Dyn. Nat. Soc. 7, 201–212 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. Burgin, M.: Hyperfunctionals and generalized distributions. In: Krinik, A.C., Swift, R.J. (eds.) Stochastic processes and functional analysis, a Dekker series of lecture notes in pure and applied mathematics, vol. 238, pp. 81–119. CRC Press, Boca Raton, FL (2004)Google Scholar
  9. Burgin, M.: Hypermeasures in general spaces. Int. J. Pure Appl. Math 24, 299–323 (2005a)MathSciNetMATHGoogle Scholar
  10. Burgin, M.: Super-recursive algorithms. Springer, New York (2005b)MATHGoogle Scholar
  11. Burgin, M.: Topology in nonlinear extensions of hypernumbers. Discrete Dyn. Nat. Soc. 10(2), 145–170 (2005c)MathSciNetCrossRefGoogle Scholar
  12. Burgin, M.: Nonlinear partial differential equations in extrafunctions. Integr: Mathl. Theory. Appl. 2, 17–50 (2010)MATHGoogle Scholar
  13. Church, A.: Introduction to mathematical logic. Princeton University Press, Princeton (1956)MATHGoogle Scholar
  14. Fuchs, L.: Partially ordered algebraic systems. Pergamon Press, London (1963)MATHGoogle Scholar
  15. Gonshor, H.: An introduction to the theory of surreal numbers. Cambridge University Press, Cambridge, UK (1986)MATHCrossRefGoogle Scholar
  16. Kurosh, A.G.: Lectures on general algebra. Chelsea P. C, New York (1963)Google Scholar
  17. Ross, K.A.: Elementary analysis: the theory of calculus. Springer, New York (1996)Google Scholar

Copyright information

© Mark Burgin 2012

Authors and Affiliations

  • Mark Burgin
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations