Other Techniques in Nanoindentation

  • Anthony C. Fischer-CrippsEmail author
Part of the Mechanical Engineering Series book series (MES)


Nanoindentation has proven to be a very versatile method of mechanical testing. It is often considered to be non-destructive in the sense that the indentations are in general, too small to be visible to the naked eye and, for the most part, the test does not impair the structural integrity of the specimen. Compared to the previous chapters, we now turn to a discussion of various unusual and advanced methods of testing that illustrate the versatility of the method.


Residual Stress Acoustic Emission Strain Rate Sensitivity Acoustic Emission Signal Bulk Metallic Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Shiwa, E.R. Weppelmann, D. Munz, M.V. Swain, and T. Kishi, “Acoustic emission and precision force-displacement observations on pointed and spherical indentation of silicon and TiN film on silicon,” J. Mat. Sci. 31, 1996, pp. 5985–5991.CrossRefGoogle Scholar
  2. 2.
    N.I. Tymiak, A. Daugela, T.J. Wyrobek, and O.L. Warren, “Highly localized acoustic emission monitoring of nanoscale indentation contacts,” J. Mater. Res. 18 4, 2003, pp. 784–796.CrossRefGoogle Scholar
  3. 3.
    D. Tabor, Hardness of Metals, Clarendon Press, Oxford,1951.Google Scholar
  4. 4.
    R. Hill, B. Storåkers, and A.B. Zdunek, “A theoretical study of the Brinell hardness test,” Proc. R. Soc. A423, 1989, pp. 301–330.CrossRefGoogle Scholar
  5. 5.
    M.M. Chaudhri, “Subsurface deformation patterns around indentation in work-hardened mild steel,” Phil. Mag. Lett. 67 2, 1993, pp. 107–115.CrossRefGoogle Scholar
  6. 6.
    A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, “Indentation of a power-law creeping solid,” Proc. R. Soc. A441, 1993, pp. 97–124.CrossRefGoogle Scholar
  7. 7.
    B. Storåkers and P. -L. Larsson, “On Brinell and Boussinesq indentation of creeping solids,” J. Mech. Phys. Solids, 42 2, 1994, pp. 307–332.CrossRefzbMATHGoogle Scholar
  8. 8.
    M.J. Mayo and W.D. Nix, “A microindentation study of superplasticity in Pb, Sn, and Sn-38wt%Pb,” Acta Metall. 36 8, 1988, pp. 2183–2192.CrossRefGoogle Scholar
  9. 9.
    N.R. Moody, A. Strojny, D. Medlin, S. Guthrie, and W.W. Gerberich, “Test rate effects on the mechanical behaviour of thin aluminium films,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 281–286.CrossRefGoogle Scholar
  10. 10.
    Y.-T. Cheng and C.-M. Cheng, “What is indentation hardness?,” Surf. Coat. Tech. 133-134, 2000, pp. 417–424.CrossRefGoogle Scholar
  11. 11.
    C.A. Schuh, T.G. Nieh and Y. Kawamura, “Rate dependence of serrated flow during nanoindentation of a bulk metallic glass,” J. Mater. Res. 17 7, 2002, pp. 1651–1654.CrossRefGoogle Scholar
  12. 12.
    N.Q. Chinh, Gy. Horváth, Zs. Kovács, J. Lendvai, Characterization of plastic instability steps occurring in depth-sensing indentation tests,” Mat. Sci. and Eng. A324, 2002 pp. 219–224.CrossRefGoogle Scholar
  13. 13.
    A.C. Fischer-Cripps, Introduction to Contact Mechanics, 2nd Ed. Springer-Verlag, New York, 2007.Google Scholar
  14. 14.
    S. Palmqvist, “A method to determine the toughness of brittle materials, especially hard materials,” Jernkontorets Ann. 141, 1957, pp. 303–307.Google Scholar
  15. 15.
    B.R. Lawn, A.G. Evans, and D.B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc. 63, 1980, pp. 574–581.CrossRefGoogle Scholar
  16. 16.
    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I Direct crack measurements,” J. Am. Ceram. Soc. 64 9, 1981, pp. 533–538.CrossRefGoogle Scholar
  17. 17.
    M.T. Laugier, “Palmqvist indentation toughness in WC-Co composites,” J. Mater. Sci. Lett. 6, 1987, pp. 897–900.CrossRefGoogle Scholar
  18. 18.
    F. Ouchterlony, “Stress intensity factors for the expansion loaded star crack,” Eng. Frac. Mechs. 8, 1976, pp. 447–448.CrossRefGoogle Scholar
  19. 19.
    R. Dukino and M.V. Swain, “Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters,” J. Am. Ceram. Soc. 75 12, 1992, pp. 3299–3304.CrossRefGoogle Scholar
  20. 20.
    J.S. Field, M.V. Swain, J.D. Dukino, “Determination of fracture toughness from the extra penetration produced by indentation pop-in,” J. Mater. Res. 18 6, 2003, pp. 1412–1416.CrossRefGoogle Scholar
  21. 21.
    E.R. Petty and H. O’Neill, “Hot hardness values in relation to the physical properties of metals,” Metallurgica, 63, 1961, pp. 25–30.Google Scholar
  22. 22.
    A.G. Atkins and D. Tabor, “Mutual indentation hardness apparatus for use at very high temperatures,” Brit. J. Appl. Phys. 16, 1965, pp. 1015–1021.CrossRefGoogle Scholar
  23. 23.
    A.G. Atkins and D. Tabor, “Hardness and deformation properties of solids at very high temperatures,” Proc. R. Soc. A292, 1966, pp. 441–459.CrossRefGoogle Scholar
  24. 24.
    A.G. Atkins and D. Tabor, “The plastic deformation of crossed cylinders and wedges,” J. Inst. Metals, 94, 1966, pp. 107–115.Google Scholar
  25. 25.
    E.A. Payzant, H.W. King, S. Das Gupta, and J.K. Jacobs, “Hot hardness of ceramic cutting tools using depth of penetration measurements,” in Development and Applications of Ceramics and New Metal Alloys, H. Mostaghaci and R.A.L. Drew, eds. Canadian Institute of Mining and Metallurgy, Montreal, 1993.Google Scholar
  26. 26.
    T.R.G. Kutty, C. Ganguly, and D.H. Sastry, “Development of creep curves from hot indentation hardness data,” Scripta Materialia, 34 12, 1996, pp. 1833–1838.CrossRefGoogle Scholar
  27. 27.
    T. Suzuki and T. Ohmura, “Ultra-microindentation of silicon at elevated temperatures,” Phil. Mag. A 74 5, 1996, pp.1073–1084.CrossRefGoogle Scholar
  28. 28.
    S.A. Syed Asif and J.B. Pethica, “Nano-scale indentation creep testing at non-ambient temperatures,” J. Adhesion, 67, 1998, pp. 153–165.CrossRefGoogle Scholar
  29. 29.
    B.D. Beake and J.F. Smith, “High temperature nanoindentation testing of fused silica and other materials,” Phil. Mag. A 82 10, 2002, pp. 2179–2186.CrossRefGoogle Scholar
  30. 30.
    A.C. Fischer-Cripps and C. Comte, unpublished work.Google Scholar
  31. 31.
    C.A. Schuh, C.E. Packard, and A.C. Lund, “Nanoindentation and contact-mode imaging at high temperatures,” J. Mater. Res. 21 3, 2006, pp. 725–736.CrossRefGoogle Scholar
  32. 32.
    A.A. Volinsky, N.R. Moody, and W.W. Gerberich, “Nanoindentation of Au and Pt/Cu thin films at elevated temperatures,” J. Mater. Res. 19 9, 2004, pp. 2650–2657.CrossRefGoogle Scholar
  33. 33.
    K. Shinohara, K. Yasuda, M. Yamada, and C. Kinoshita, “Universal method for evaluating work-hardening exponent of metals using ultra-microhardness tests,” Acta. Metall. Mater. 42 11, 1994, pp. 3909–3915.CrossRefGoogle Scholar
  34. 34.
    J.H. Ahn and D. Kwon, “Derivation of plastic stress-strain relationship from ball indentations: Examination of strain definition and pileup effect,” J. Mater. Res. 16 11, 2001, pp. 3170–3178.CrossRefGoogle Scholar
  35. 35.
    T.W. Capehart and Y.-T. Cheng, “Determining constitutive models from conical indentation: Sensitivity analysis,” J. Mater. Res. 18 4, 2003, pp. 827–832.CrossRefGoogle Scholar
  36. 36.
    J.H. Underwood, “Residual stress measurement using surface displacements around an indentation,” Experimental Mechanics, 30, 1973, pp. 373–380.CrossRefGoogle Scholar
  37. 37.
    S.G. Roberts, C.W. Lawrence, Y. Bisrat, and P.D. Warren, “Determination of surface residual stresses in brittle materials by Hertzian indentation: Theory and experiment,” J. Am. Ceram. Soc. 82 7, 1999, pp. 1809–1816.CrossRefGoogle Scholar
  38. 38.
    M.M. Chaudhri and M.A. Phillips, “Quasi-static cracking of thermally tempered soda-lime glass with spherical and Vickers indenters,” Phil. Mag. A 62 1, 1990, pp. 1–27.CrossRefGoogle Scholar
  39. 39.
    S. Chandrasekar and M.M. Chaudhri, “Indentation cracking in soda-lime glass and Ni-Zn ferrite under Knoop and conical indenters and residual stress measurements,” Phil. Mag. A 67 6, 1993, pp. 1187–1218.CrossRefGoogle Scholar
  40. 40.
    A. Bolshakov, W.C. Oliver, and G.M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation. 2. Finite element simulations,” J. Mater. Res. 11 3, 1996, pp. 760–768.CrossRefGoogle Scholar
  41. 41.
    Y.-H. Lee and D. Kwong, “Residual stresses in DLC/Si and Au/Si systems: Application of a stress-relaxation model to nanoindentation technique,” J. Mater. Res. 17 4, 2002, pp. 901–906.CrossRefGoogle Scholar
  42. 42.
    A. Taljat and G.M. Pharr, “Measurement of residual stresses by load and depth sensing spherical indentation,” Mat. Res. Soc. Symp. Proc. 594, 2000, pp. 519–524.CrossRefGoogle Scholar
  43. 43.
    J.G. Swadener, B. Taljat, and G.M. Pharr, “Measurement of residual stress by load and depth sensing indentation with spherical indenters,” J. Mater. Res. 16 7, 2001, pp. 2091–2102.CrossRefGoogle Scholar
  44. 44.
    K.L. Johnson, K. Kendall, and A.D. Roberts, “Surface energy and the contact of elastic solids,” Proc. R. Soc. A324, 1971, pp. 303–313.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Fischer-Cripps Laboratories Pty Ltd.Killarney HeightsAustralia

Personalised recommendations