Skip to main content

Oocyte Insemination and Culture

  • Chapter
  • First Online:
In Vitro Fertilization

Abstract

The human preimplantation embryo undergoes significant changes in its physiology during in vitro development and has thus to be adequately supported. The goal of IVF laboratories is to preserve the developmental competence of the gametes and resulting embryos, and provide a safe environment during the entire IVF handling and culture procedures. During the past decade, most efforts have been focused on optimization of the culture system for oocytes and preimplantation-stage embryos, paying special attention to media and gas components that together may be considered key factors affecting the success of the assisted reproduction procedures.

This chapter will review the main aspects of oocyte and embryo culture, with a focus on current efforts to provide a more appropriate environment for embryo growth, particularly in the context of introducing new sophisticated platforms and engineered devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci USA. 1967;58(2):560–7.

    PubMed  CAS  Google Scholar 

  2. Donahue RP, Stern S. Follicular cell support of oocyte maturation: production of pyruvate in vitro. J Reprod Fertil. 1968;17(2):395–8.

    PubMed  CAS  Google Scholar 

  3. Brower PT, Schultz RM. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol. 1982;90(1):144–53.

    PubMed  CAS  Google Scholar 

  4. Haghighat N, Van Winkle LJ. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J Exp Zool. 1990;253(1):71–82.

    PubMed  CAS  Google Scholar 

  5. Horne R, Bishop CJ, Reeves G, et al. Aspiration of oocytes for in-vitro fertilization. Hum Reprod Update. 1996;2:77–85.

    PubMed  CAS  Google Scholar 

  6. Edwards RG, Steptoe PC, Fowler RE, Baillie J. Observations on preovulatory human ovarian follicles and their aspirates. Br J Obstet Gynaecol. 1980;87(9):69–79.

    Google Scholar 

  7. Pool TB, Ord VA. Oocyte treatment: from retrieval to insemination. In: Gardner DK, Weissman A, Howles CM, Shoham Z, editors. Textbook of assisted reproductive techniques. 2nd ed. Philadelphia, PA: Taylor & Francis; 2004. p. 107–14.

    Google Scholar 

  8. Sathananthan AH, Trounson A, Freemann L, Brady T. The effects of cooling human oocytes. Hum Reprod. 1988;3:968–77.

    PubMed  CAS  Google Scholar 

  9. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990;54:102–8.

    PubMed  CAS  Google Scholar 

  10. Almeida PA, Bolton VN. The effect of temperature fluctuations on the cytoskeletal organisation and chromosomal constitution of the human oocyte. Zygote. 1995;3:357–65.

    PubMed  CAS  Google Scholar 

  11. Mortimer D, Mortimer ST. Quality and risk management in the IVF laboratory. Cambridge: Cambridge University Press; 2005.

    Google Scholar 

  12. Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.

    PubMed  CAS  Google Scholar 

  13. Hentemann M, Mousavi K, Bertheussen K. Differential pH in embryo culture. Fertil Steril. 2011;95:1291–4.

    PubMed  CAS  Google Scholar 

  14. Iwasaki T, Kimura E, Totsukawa K. Studies on a chemically defined medium for in vitro culture of in vitro matured and fertilized porcine oocytes. Theriogenology. 1999;51:709–20.

    PubMed  CAS  Google Scholar 

  15. Morgia F, Torti M, Montigiani M, Piscitelli C, Giallonardo A, Schimberni M, Giannini P. Sbracia Use of a medium buffered with N-hydroxyethylpiperazine-N-ethanesulfonate (HEPES) in intracytoplasmic sperm injection procedures is detrimental to the outcome of in vitro fertilization. Fertil Steril. 2006;85(5):1415–9.

    PubMed  CAS  Google Scholar 

  16. Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online. 2010;21(1):6–16.

    PubMed  Google Scholar 

  17. Rattanachaiyanont M, Leader A, Léveillé MC. Lack of correlation between oocyte-corona-cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertil Steril. 1999;71(5):937–40.

    PubMed  CAS  Google Scholar 

  18. Veeck LL. The morphologic estimation of mature oocytes and their preparation for insemination. In: Jones Jr HW, Jones GS, et al., editors. In-vitro fertilization—Norfolk. Baltimore, MD: Williams and Wilkins; 1986. p. 81.

    Google Scholar 

  19. Wolf DP. Oocyte quality and fertilization. In: Wolf DP, editor. In-vitro fertilization and embryo transfer. New York: Plenum; 1988. p. 129–38.

    Google Scholar 

  20. Daya S, Kohut J, Gunby J, et al. Influence of blood clots in the cumulus complex on oocyte fertilization and cleavage. Hum Reprod. 1990;5:744–6.

    PubMed  CAS  Google Scholar 

  21. Veeck LL. The morphological assessment of human oocytes and early conception. In: Keel BA, Webster BW, editors. Handbook of the laboratory diagnosis and treatment of infertility. Boca Raton, FL: CRC; 1990. p. 353–69.

    Google Scholar 

  22. Ng ST, Chang TH, Wu TC. Prediction of the rates of fertilization, cleavage, and pregnancy success by cumulus-coronal morphology in an in vitro fertilization program. Fertil Steril. 1999;72:412–7.

    PubMed  CAS  Google Scholar 

  23. Lin YC, Chang SY, Lan KC, et al. Human oocyte maturity in vivo determines the outcome of blastocyst development in vitro. J Assist Reprod Genet. 2003;20:506–12.

    PubMed  Google Scholar 

  24. Balaban B. Urman B Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online. 2006;12:608–15.

    PubMed  Google Scholar 

  25. Motta PM, Nottola SA, Pereda J, et al. Ultrastructure of human cumulus oophorus: a transmission electron microscopic study on oviductal oocytes and fertilized eggs. Hum Reprod. 1995;10:2361–7.

    PubMed  CAS  Google Scholar 

  26. Ebner T, Moser M, Shebl O, Sommergruber M, Yaman C, Tews G. Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development. Reprod Biomed Online. 2008;16(6):801–7.

    PubMed  CAS  Google Scholar 

  27. Kahraman S, Yakin K, Donmez E, et al. Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod. 2000;15:2390–3.

    PubMed  CAS  Google Scholar 

  28. Rienzi L, Ubaldi F, Anniballo R, et al. Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13:1014–9.

    PubMed  CAS  Google Scholar 

  29. Yanagida K, Yazawa H, Katayose H, et al. Influence of oocyte preincubation time on fertilization after intracytoplasmic sperm injection. Hum Reprod. 1998;13:2223–6.

    PubMed  CAS  Google Scholar 

  30. Van de Velde H, de Vos A, Joris H, et al. Effect of ­timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13:3160–4.

    PubMed  Google Scholar 

  31. Jacobs M, Stolwijk AM, Wetzels AM. The effect of insemination/injection time on the results of IVF and ICSI. Hum Reprod. 2001;16:1708–13.

    PubMed  CAS  Google Scholar 

  32. Ho JY, Chen MJ, Yi YC, et al. The effect of preincubation period of oocytes on nuclear maturity, fertilization rate, embryo quality, and pregnancy outcome in IVF and ICSI. J Assist Reprod Genet. 2003;9:358–64.

    Google Scholar 

  33. Isiklar A, Mercan R, Balaban B, et al. Impact of oocyte pre-incubation time on fertilization, embryo quality and pregnancy rate after intracytoplasmic sperm injection. Reprod Biomed Online. 2004;6:682–6.

    Google Scholar 

  34. Dozortsev D, Nagy P, Abdelmassih S, et al. The optimal time for intracytoplasmic sperm injection in the human is from 37 to 41 hours after administration of human chorionic gonadotropin. Fertil Steril. 2004;6:1492–6.

    Google Scholar 

  35. Falcone P, Gambera L, Pisoni M, et al. Correlation between oocyte preincubation time and pregnancy rate after intracytoplasmic sperm injection, Gynecol Endocrinol. 2008;6:295–9.

    Google Scholar 

  36. Eppig JJ, Schultz RM, O’Brien M, Chesnel F. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol. 1994;164:1–9.

    PubMed  CAS  Google Scholar 

  37. Balakier H, Sojecki A, Motamedi G, Librach C. Time dependent capability of human oocytes for activation and pronuclear formation during metaphase II arrest. Hum Reprod. 2004;19:982–7.

    PubMed  Google Scholar 

  38. Aitken JR, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81:459–69.

    PubMed  CAS  Google Scholar 

  39. Dumoulin JCM, Bras M, Land JA, Pieters M, Enginsu ME, et al. Effect of the number of inseminated spermatozoa on subsequent human and mouse embryonic development in vitro. Hum Reprod. 1992;7:1010–3.

    PubMed  CAS  Google Scholar 

  40. Parinaud J, Labal B, Mieusset R, Rkhoilley G, Vieitez G. Influence of sperm parameters on embryo quality. Fertil Steril. 1993;60:888–92.

    PubMed  CAS  Google Scholar 

  41. Aitken JR. A free radical theory of male infertility. Reprod Fertil Dev. 1994;6:19–24.

    PubMed  CAS  Google Scholar 

  42. Gianaroli L, Fiorentino A, Magli MC, et al. Prolonged sperm–oocyte exposure and high sperm concentration affect human embryo viability and pregnancy rate. Hum Reprod. 1996;11:2507–11.

    PubMed  CAS  Google Scholar 

  43. Quinn P. The development and impact of culture media for assisted reproductive technologies. Fertil Steril. 2004;81:27–9.

    PubMed  Google Scholar 

  44. Gardner DK, Lane M. Culture of the mammalian preimplantation embryo. In: Gardner DK, Lane M, Watson AJ, editors. A laboratory guide to the mammalian embryo. Oxford, NY: Oxford University Press; 2004. p. 41–61.

    Google Scholar 

  45. Earle WR. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes in living cells. J Natl Cancer Inst. 1943;4:165–212.

    CAS  Google Scholar 

  46. Krebs HA, Henseleit K. Untersuchungen uÈ ber die Harnstoffbildung im Tierkorper. Z Physiol Chem. 1932;210:33–66.

    CAS  Google Scholar 

  47. Tyrode MV. The mode of action of some purgative salts. Arch Int Pharmacodyn. 1910;20:205–23.

    Google Scholar 

  48. Biggers JD, McGinnis LK. Evidence that glucose is not always an inhibitor of mouse preimplantation development in vitro. Hum Reprod. 2001;16:153–63.

    PubMed  CAS  Google Scholar 

  49. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9(6):557–82.

    PubMed  CAS  Google Scholar 

  50. Gardner DK, Lane M. Development of viable mammalian embryos in vitro: evolution of sequential media. In: Cibelli J, Lanza RP, Campbell KHS, West MD, editors. Principles of cloning. NY: Academic; 2002. p. 187–213.

    Google Scholar 

  51. Leese HJ. Human embryo culture: back to nature. J Assist Reprod Genet. 1998;15:466–8.

    PubMed  CAS  Google Scholar 

  52. Leese HJ, Tay JI, Reischl J, et al. Formation of fallopian tubal fluid: role of a neglected epithelium. Reproduction. 2001;121:339–46.

    PubMed  CAS  Google Scholar 

  53. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3:367–82.

    PubMed  CAS  Google Scholar 

  54. Gardner DK, Lane M. Blastocyst transfer. Clin Obstet Gynaecol. 2003;46:231–8.

    Google Scholar 

  55. Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev. 2008;20:9–18.

    PubMed  Google Scholar 

  56. Gardner DK, Lane M. Embryo culture systems. In: Gardner DK, editor. In vitro fertilization: a practical approach. New York: Informa Healthcare; 2007. p. 221–82.

    Google Scholar 

  57. Lane M, Gardner DK. Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gynaecol. 2007;21:83–100.

    PubMed  Google Scholar 

  58. Pool TB. An update on embryo culture for human assisted reproductive technology: media, performance, and safety seminars. Semin Reprod Med. 2002;23:309–18.

    Google Scholar 

  59. Pool TB. Recent advances in the production of viable human embryos in vitro. Reprod Biomed Online. 2005;4:294–302.

    Google Scholar 

  60. Biggers JD, McGinnis LK, Lawitts JA. One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum Reprod. 2005;20:3376–84.

    PubMed  CAS  Google Scholar 

  61. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.

    PubMed  Google Scholar 

  62. Sepu´lveda S, Garcia J, Arriaga E, et al. In vitro development and pregnancy outcomes for human embryos cultured in either a single medium or in a sequential media system. Fertil Steril. 2008;91:1765–70.

    Google Scholar 

  63. Vajta G, Rienzi L, Cobo A, Yovich J. Embryo culture: can we perform better than nature? Reprod Biomed Online. 2010;20:453–69. Review.

    PubMed  Google Scholar 

  64. Bavister BD. How animal embryo research led to the first documented human IVF. Reprod Biomed Online. 2002;4 Suppl 1:24–9.

    PubMed  Google Scholar 

  65. Edwards RG. Test-tube babies. Nature. 1981;293:253–6.

    PubMed  CAS  Google Scholar 

  66. Nagao Y, Saeki K, Hoshi M, et al. Effects of oxygen concentration and oviductal epithelial tissue on the development of in vitro matured and fertilized bovine oocytes cultured in protein-free medium. Theriogenology. 1994;41:681–7.

    PubMed  CAS  Google Scholar 

  67. Trounson A, Pushett D, Maclellan LJ, et al. Current status of IVM/IVF and embryo culture in humans and farm animals. Theriogenology. 1994;41:57–66.

    Google Scholar 

  68. Voelkel SA, Hu YX. Effect of gas atmosphere on the development of one-cell bovine embryos in two culture systems. Theriogenology. 1992;37:1117–31.

    PubMed  CAS  Google Scholar 

  69. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–9.

    PubMed  CAS  Google Scholar 

  70. Maas DH, Storey BT, Mastroianni Jr L. Oxygen tension in the oviduct of the rhesus monkey (Macaca mulatta). Fertil Steril. 1976;27:1312–7.

    PubMed  CAS  Google Scholar 

  71. Mastroianni Jr L, Jones R. Oxygen Tension within the Rabbit Fallopian Tube. J Reprod Fertil. 1965;9:99–102.

    PubMed  Google Scholar 

  72. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development. Reprod Biomed Online. 2010;21(3):402–10.

    PubMed  CAS  Google Scholar 

  73. Waldenstrom U, Engstrom AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91(6):2461–5.

    PubMed  Google Scholar 

  74. Gomes Sobrinho DB, Oliveira JB, Petersen GC, et al. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:143.

    PubMed  Google Scholar 

  75. Thompson JG, Peterson AJ. Bovine embryo culture in vitro: new developments and post-transfer consequences. Hum Reprod. 2000;15 Suppl 5:59–67.

    PubMed  Google Scholar 

  76. Vajta G, Holm P, Greve T, et al. The submarine incubation system, a new tool for in vitro embryo culture. A technique report. Theriogenology. 1997;48:1379–85.

    Google Scholar 

  77. Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17(4):541–57.

    PubMed  CAS  Google Scholar 

  78. Rienzi L, Vajta G, Ubaldi F. New culture devices in ART. Placenta. 2011;32 Suppl 3:S248–51.

    PubMed  Google Scholar 

  79. Lane M, Gardner DK. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum Reprod. 1992;7:558–62.

    PubMed  CAS  Google Scholar 

  80. Vajta G, Peura TT, Holm P, et al. New method for culture of zona-included and zone-free embryos: the Well of the Well (WOW) system. Mol Reprod Dev. 2000;55:256–64.

    PubMed  CAS  Google Scholar 

  81. Thouas GA, Jones GM, Trounson AO. The ‘GO’ system–a novel method of microculture for in vitro development of mouse zygotes to the blastocyst stage. Reproduction. 2003;126:161–9.

    PubMed  CAS  Google Scholar 

  82. Vajta G, Korösi T, Du Y, et al. The Well-of-the-Well system: an efficient approach to improve embryo development. Reprod Biomed Online. 2008;17:73–81.

    PubMed  Google Scholar 

  83. Beebe DJ, Wheeler M, Zeringue H, et al. Microfluidic technology for assisted reproduction. Theriogenology. 2002;57:125–35.

    PubMed  CAS  Google Scholar 

  84. Smith GD, Takayama S. Gamete and embryo isolation and culture with microfluidics. Theriogenology. 2007;68S:S190–5.

    Google Scholar 

  85. Thompson JG. Culture without the Petri dish. Theriogenology. 2007;67:16–20.

    PubMed  Google Scholar 

  86. Wang W, Liu X, Gelinas D, Ciruna B, Sun Y. A fully automated robotic system for microinjection of zebrafish embryos. PLoS One. 2007;2(9):e862.

    PubMed  Google Scholar 

  87. Machtinger R, Racowsky C. The bioinformatics of embryo development and assessment. RBMOnline (In Press).

    Google Scholar 

  88. Shoukir Y, Campana A, Farley T, et al. Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum Reprod. 1997;12:1531–6.

    PubMed  CAS  Google Scholar 

  89. Sakkas D, Shoukir Y, Chardonnens D, et al. Early cleavage of human embryos to the two-cell stage after intacytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod. 1998;13:182–7.

    PubMed  CAS  Google Scholar 

  90. Sakkas D, Percival G, D’Arcy Y, et al. Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selection. Fertil Steril. 2001;76:1150–6.

    PubMed  CAS  Google Scholar 

  91. Salumets A, Hyden-Granskog C, Makinen S, et al. Early cleavage predicts the viability of human embryos in elective single embryo transfer procedures. Hum Reprod. 2003;18:821–5.

    PubMed  Google Scholar 

  92. Neuber E, Rinaudo P, Trimarchi JR, et al. Sequential assessment of individually cultured human embryos as an indicator of subsequent good quality blastocyst development. Hum Reprod. 2003;18:1307–12.

    PubMed  CAS  Google Scholar 

  93. Van Montfoort AP, Dumoulin JC, Kester AD, et al. Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod. 2004;19:2103–8.

    PubMed  Google Scholar 

  94. Guerif E, Le Gouge A, Giraudeau B, et al. Limited value of morphological assessment at day 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod. 2007;22:1973–81.

    PubMed  CAS  Google Scholar 

  95. Lewin A, Schenker JG, Safran A, et al. Embryo growth rate in vitro as an indicator of embryo quality in IVF cycles. J Assist Reprod Genet. 1994;11:500–3.

    PubMed  CAS  Google Scholar 

  96. Giorgetti C, Terriou P, Auquier P, et al. Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum Reprod. 1995;10:2427–31.

    PubMed  CAS  Google Scholar 

  97. Ziebe S, Petersen K, Lindberg S, et al. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12:1545–9.

    PubMed  CAS  Google Scholar 

  98. Desai NN, Goldstein J, Rowland DY, et al. Morphological evaluation of human embryos and derivation of an embryo qyality scoring system specific for day 3 embryos: a preliminary study. Hum Reprod. 2000;15:2190–6.

    PubMed  CAS  Google Scholar 

  99. Handarson T, Hanson C, Sjögren A, et al. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16:313–8.

    Google Scholar 

  100. Kligman I, Benavida C, Alikani M, et al. The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod. 1996;11:1492–8.

    PubMed  CAS  Google Scholar 

  101. Jackson KV, Ginsburg ES, Hornstein MD, et al. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization-embryo transfer cycles. Fertil Steril. 1998;70:60–6.

    PubMed  CAS  Google Scholar 

  102. Palmstierna M, Murkes D, Csemiczky G, et al. Zona pellucida thickness variation and occurrence of visible mononucleated blastomers in preembryos are associated with a high pregnancy rate in IVF treatment. J Assist Reprod Genet. 1998;15:70–5.

    PubMed  CAS  Google Scholar 

  103. Pelinck MJ, De Vos M, Dekens M, et al. Embryos cultured in vitro with multinucleated blastomeres have poor implantation potential in human in-vitro fertilization and intracytoplasmic sperm injection. Hum Reprod. 1998;13:960–3.

    PubMed  CAS  Google Scholar 

  104. Van Royen E, Mangelschots K, Vercruyssen M, et al. Multinucleation in cleavage stage embryos. Hum Reprod. 2003;18:1062–9.

    PubMed  Google Scholar 

  105. Staessen C, Camus M, Bollen N, et al. The relationship between embryo quality and the occurrence of multiple pregnancies. Fertil Steril. 1992;57:626–30.

    PubMed  CAS  Google Scholar 

  106. Roseboom TJ, Vermeiden JP, Schoute E, et al. The probability of pregnancy after embryo transfer is affected by the age of the patient, cause of infertility, number of embryos transferred and the average morphology score, as revealed by multiple logistic regression analysis. Hum Reprod. 1995;10:3035–41.

    PubMed  CAS  Google Scholar 

  107. Alikani M, Cohen J, Tomkin G, et al. Human embryo fragmentation in vitro and its implications for ­pregnancy and implantation. Fertil Steril. 1999;71:836–42.

    PubMed  CAS  Google Scholar 

  108. Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod. 1999;14:429–47.

    PubMed  CAS  Google Scholar 

  109. Van Royen E, Mangelschots K, De Neuborg D, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999;14:2345–9.

    PubMed  Google Scholar 

  110. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

    Google Scholar 

  111. Veeck LL. Preembryo grading and degree of cytoplasmic fragmentation. In: Veeck LL, editor. An Atlas of Human Gametes and Conceptuses. New York: Parthenon Publishing Group; 1999. p. 46–50.

    Google Scholar 

  112. Fisch JD, Rodriguez H, Ross R, et al. The Graduated Embryo Score (GES) predicts blastocyst formation and pregnancy rate from cleavage-stage embryos. Hum Reprod. 2001;16:1970–5.

    PubMed  CAS  Google Scholar 

  113. Rienzi L, Ubaldi F, Iacobelli M, et al. Significance of morphological attributes of the early embryo. Reprod Biomed Online. 2005;10:669–81.

    PubMed  Google Scholar 

  114. Cutting R, Morrol D, Roberts SA, et al. Elective single embryo transfer: guidelines for practice British Fertility Society and Association of Clinical Embryologists. Hum Fertil. 2008;11:131–46.

    Google Scholar 

  115. Stensen MH, Tanbo T, Storeng R, et al. Routine morphological scoring systems in assisted reproduction treatment fail to reflect age-related impairment of oocyte and embryo quality. Reprod Biomed Online. 2010;21:118–25.

    PubMed  Google Scholar 

  116. Racowsky C, Vernon M, Mayer J, et al. Standardization of grading embryo morphology. Fertil Steril. 2010;94(3):1152–3.

    PubMed  Google Scholar 

  117. Gardner DK, Lane M, Stevens J, et al. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–8.

    PubMed  CAS  Google Scholar 

  118. Schoolcraft WB, Gardner DK. Blastocyst culture and transfer increases the efficiency of oocyte donation. Fertil Steril. 2000;74:482–6.

    PubMed  CAS  Google Scholar 

  119. Langley MT, Marek DM, Gardner DK, et al. Extended embryo culture in human assisted reproduction treatments. Hum Reprod. 2001;16:902–8.

    PubMed  CAS  Google Scholar 

  120. Schwarzler P, Zech H, Auer M, et al. Pregnancy outcome after blastocyst transfer as compared to early cleavage stage embryo transfer. Hum Reprod. 2004;19:2097–102.

    PubMed  Google Scholar 

  121. Blake DA, Farquhar CM, Johnson N, et al. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007; CD002118

    Google Scholar 

  122. Coskun S, Hollanders J, Al-Hassan S, et al. Day 5 versus day 3 embryo transfer: a controlled randomized trial. Hum Reprod. 2000;15:1947–52.

    PubMed  CAS  Google Scholar 

  123. Huisman GJ, Fauser BC, Eijkemans MJ, et al. Implantation rates after in vitro fertilization and transfer of a maximum of two embryos that have undergone three to five days of culture. Fertil Steril. 2000;73:117–22.

    PubMed  CAS  Google Scholar 

  124. Alper M, Brinsden P, Fischer R, et al. To blastocyst or not to blastocyst? That is the question. Hum Reprod. 2001;16:617–9.

    PubMed  CAS  Google Scholar 

  125. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: fertility and genetics beyond. London: Parthenon Publishing; 1999. p. 378–88.

    Google Scholar 

  126. Veeck LL, Zaninovic N. Grading criteria for human blastocysts. An atlas of human blastocysts. New York: Parthenon Publishing; 2003. p. 118.

    Google Scholar 

  127. Stephenson EL, Braude PR, Mason C. International community consensus standard for reporting derivation of human embryonic stem cell lines. Regen Med. 2007;2:349–62.

    PubMed  Google Scholar 

  128. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17:385–91.

    PubMed  CAS  Google Scholar 

  129. Wong CC, Loewke KE, Bossert NL, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.

    PubMed  CAS  Google Scholar 

  130. Meseguer M, Herrero J, Tejera A, et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.

    PubMed  Google Scholar 

  131. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, Lieberman BA, Leese HJ. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19:2319–24.

    PubMed  CAS  Google Scholar 

  132. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007;88:1350–7.

    PubMed  Google Scholar 

  133. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15:271–7.

    PubMed  CAS  Google Scholar 

  134. Seli E, Vergouw CG, Morita H, Botros LL, Roos P, Lambalk CB, Yamashita N, Kato O, Sakkas D. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010;94:535–42.

    PubMed  Google Scholar 

  135. Seli E, Bruce C, Botros LL, Henson M, Roos P, Judge K, Hardarson T, Ahlström A, Harrison P, Henman M, et al. Receiver operating characteristic (ROC) analysis of day 5 morphology grading and metabolomics viability Score on predicting implantation outcome. J Assist Reprod Genet. 2011;28:137–44.

    PubMed  Google Scholar 

  136. Nagy ZP, Sakkas D, Behr B. Non-invasive assessment of embryo viability by metabolomic profiling of culture media (‘metabolomics’). Reprod Biomed Online. 2008;17:502–7.

    PubMed  CAS  Google Scholar 

  137. Nagy ZP, Jones-Colon S, Roos P, Botros L, Greco E, Dasig J, Behr B. Metabolomic assessment of oocyte viability. Reprod Biomed Online. 2009;18:219–25.

    PubMed  Google Scholar 

  138. Vergouw CG, Botros LL, Roos P, Lens JW, Schats R, Hompes PGA, Burns DH, Lambalk CB. Metabolomic profiling by near infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum Reprod. 2008;23:1499–504.

    PubMed  CAS  Google Scholar 

  139. Ahlström A, Wikland M, Rogberg L, Barnett JS, Tucker M, Hardarson T. Cross-validation and predictive value of near-infrared spectroscopy algorithms for day-5 blastocyst transfer. Reprod Biomed Online. 2011. doi:10.1016/j.rbmo.2011.01.009.

    Google Scholar 

  140. Hardarson T, Ahlstrom A, Rogberg L, et al. Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod. 2012;27(1):89–96.

    PubMed  CAS  Google Scholar 

  141. Vergouw CG, Kieslinger DC, Kostelijik EH, et al. Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum Reprod. 2012;27:2304–11.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura F. Rienzi B.Sc., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maggiulli, R., Ubaldi, F., Rienzi, L.F. (2012). Oocyte Insemination and Culture. In: Ginsburg, E., Racowsky, C. (eds) In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9848-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9848-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9847-7

  • Online ISBN: 978-1-4419-9848-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics