Advertisement

Missing Data Imputation and Analysis

  • Mark Chang
Chapter
  • 2.9k Downloads
Part of the Statistics for Biology and Health book series (SBH)

Abstract

Missing data are a common occurrence in scientific research and in our daily lives. In a survey, a lack of response constitutes missing data. In clinical trials, missing data can be caused by a patient’s refusal to continue in a study, treatment failures, adverse events, or patient relocations.

Keywords

Marginal Density Miss Data Pattern Dropout Process Impute Estimator Confirmatory Clinical Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Readings and References

  1. Carpenter J.R., Kenward, M.G., White, I.R.: Sensitivity analysis after multiple imputation under missing at random: A weighting approach. Stat. Methods Med. Res. 16, 259–275 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. CHMP: Guideline on missing data in confirmatory clinical trials/1776/99 Rev. 1. www.ema.europa.eu (2009). Accessed 8 Aug 2010
  3. DeGruttola, V., Tu, X.M.: Modeling progression of CD4 + lymphocyte count and its relationship to survival time. Biometrics 50, 1003–1014 (1994)CrossRefGoogle Scholar
  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood estimation from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  5. Dmitrienko, A., Molenberghs, G., Chuang-Stein, C., Often, W.: Analysis of Clinical Trials Using SAS. SAS Institute, Cary (2005)Google Scholar
  6. Diggle P., Kenward, M.G.: Informative drop-out in longitudinal data analysis. Appl. Stat. 43, 49–93 (1994)zbMATHCrossRefGoogle Scholar
  7. Gao, S.: A shared random effect parameter approach for longitudinal dementia data with non-ignorable missing data. Stat. Med. 23, 211–219 (2004)CrossRefGoogle Scholar
  8. Gao, S., Hui, S.L.: Estimating the incidence of dementia from two-phase sampling with non-ignorable missing data. Stat. Med. 19, 1545–554 (2000)CrossRefGoogle Scholar
  9. Harel, O., Zhou, X.H.: Multiple imputation: Review of theory, implementation and software. Stat. Med. 26, 3057–3077 (2007)CrossRefMathSciNetGoogle Scholar
  10. Henderson, R., Diggle, P., Dobson, A.: Joint modeling of longitudinal measurements and event time data. Biostatistics 1, 465–480 (2000)zbMATHCrossRefGoogle Scholar
  11. Hogan, J.W., Laird, N.M.: Model-based approaches to analysing incomplete longitudinal and failure time data. Stat. Med. 16, 259–272 (1997)CrossRefGoogle Scholar
  12. Hogan, J.W., Roy, J., Korkontzelou C.: Biostatistics tutorial: Handling dropout in longitudinal data. Stat. Med. 23, 1455–1497 (2004)CrossRefGoogle Scholar
  13. Horvitz, D.G., Thompson, D.J.: A Generalization of sampling without replacement from a finite universe, J. Am. Stat. Assoc. 47, 663–685 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  14. Lancaster, T., Intrator, O.: Panel data with survival: Hospitalization of HIV-positive patients. J. Am. Stat. Assoc. 93, 46–53 (1998)zbMATHCrossRefGoogle Scholar
  15. Little, R.J.A.: Pattern-mixture models for multivariate incomplete data. J. Am. Stat. Assoc. 88, 125–134 (1993)zbMATHCrossRefGoogle Scholar
  16. Little, R.J.A.: Modeling the drop-out mechanism in repeated-measure studies. J. Am. Stat. Assoc. 90, 1112–1121 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  17. Little, R.J.: Panel on Handling Missing Data in Clinical Trial: The Prevention and Treatment of Missing Data in Clinical Trials. The National Academies Press, Washington (2010)Google Scholar
  18. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley, New York (2002)zbMATHGoogle Scholar
  19. Liu, J.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2003)Google Scholar
  20. Molenberghs, G., Kenward, M.G.: Missing Data in Clinical Studies. Wiley, Chichester (2008)Google Scholar
  21. Müller, U.U., Schick, A., Wefelmeyer, W.: Imputing responses that are not missing. In: Nikulin, M., Commengs, D., Huber, C. (eds.) Probability, Statistics and Modeling in Public Health. Springer, New York (2006)Google Scholar
  22. Rubin D.B.: Inference and missing data. Biometrika 63, 581–592 (1976)zbMATHGoogle Scholar
  23. Rubin D.B.: Multiple Imputation for Nonresponse in Surveys. Wiley, New York (1987)CrossRefGoogle Scholar
  24. SAS Institute: SAS/STAT 9.1 User’s Guide, vol. 1–7. SAS Institute, Gary (2004)Google Scholar
  25. SAS Institute Inc.: SAS/STAT 9.2 User’s Guide. Cary, NC: SAS Institute Inc. (2008)Google Scholar
  26. Ten Have, T.R., Kunselman, A.R., Pulkstenis, E.P., Landis, J.R. Mixed effect logistic regression models for longitudinal binary response data with informative drop out. Biometrics 54, 367–383 (1998)zbMATHCrossRefGoogle Scholar
  27. Tsiatis, A.A.: Semiparametric Theory and Missing Data. Springer, New York (2009)Google Scholar
  28. Van Der Laan, M.J., Robins, J.M.: Unified Methods for Censored Longitudinal Data and Causality. Springer, New York (2003)zbMATHGoogle Scholar
  29. Vonesh, E.F., Greene, T., Schluchter, M.D.: Shared parameter models for the joint analysis of longitudinal data and event times. Stat. Med. 25, 143–163 (2006)CrossRefMathSciNetGoogle Scholar
  30. Yang, X., Li, J., Shoptaw, S.: Imputation-based strategies for clinical trial longitudinal data with nonignorable missing values. Stat. Med. 27, 2826–2849 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mark Chang
    • 1
  1. 1.BiometricsAMAG Pharmaceuticals, Inc.LexingtonUSA

Personalised recommendations