One-Dimensional Metal Oxide Nanostructures for Photoelectrochemical Hydrogen Generation



Hydrogen represents a promising solution that can simultaneously address energy crisis and environmental pollutions caused by carbon-containing energy carriers, which have been recognized as two major challenges human beings seek to overcome in the 21st century. Hydrogen has very high gravimetric energy density of ∼140 MJ/kg, which is three times higher than that of gasoline. More importantly, hydrogen is a portable fuel that can react with oxygen in a fuel cell device to generate electricity in an environmentally benign manner, with water as the only side product. Central to the success of hydrogen technology and economy, the efficient generation, transportation, and storage of hydrogen are the major challenges. Despite hydrogen being known as a clean energy carrier, ironically, most hydrogen (∼95% in the United States) is presently produced from steam methane reforming and water-gas shift reaction. This approach still relies on fossil fuels or natural gas and produces undesired by-products including carbon monoxide and carbon dioxide. The development of an efficient, low-cost, and scalable method for hydrogen generation from renewable and carbon-free energy sources is the first and may be the most important step. Enormous efforts have been made in developing new strategies for hydrogen production and photoelectrochemical (PEC) approach is one of the major research focuses.


Hydrogen Generation Photocurrent Density Visible Light Absorption Pristine TiO2 Hole Diffusion Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Yilanci, I. Dincer, H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energy Combustion Sci. 35(3), 231–244 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, A.E. Rodrigures, Hydrogen production from steam methane reforming coupled with in situ CO2 capture: conceptual parametric study. Fuel 84, 1778–1789 (2005)CrossRefGoogle Scholar
  3. 3.
    C.A. Grimes, O.K. Varghese, S. Ranjan, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis (Springer, New York, NY, 2008)CrossRefGoogle Scholar
  4. 4.
    M. Ni, D.Y.C. Leung, M.K.H. Leung, K. Sumathy, An overview of hydrogen production from biomass. Fuel Process. Technol. 87, 461–472 (2006)CrossRefGoogle Scholar
  5. 5.
    T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photoelectrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991–1022 (2002)CrossRefGoogle Scholar
  6. 6.
    A.J. Bard, M.A. Fox, Artificial photosynthesis – solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995)CrossRefGoogle Scholar
  7. 7.
    K. Honda, A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–39 (1972)CrossRefGoogle Scholar
  8. 8.
    N.S. Lewis, Light work with water. Nature 414, 589 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust. Energy Rev. 11(3), 401–425 (2007)CrossRefGoogle Scholar
  10. 10.
    K. Rajeshwar, Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 37(7), 765–787 (2007)CrossRefGoogle Scholar
  11. 11.
    R. van de Krol, Y.Q. Liang, J. Schoonman, Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311–2320 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Dutta, Technology assessment of advanced electrolytic hydrogen production. Int. J. Hydrogen Energy 15(6), 379–386 (1990)CrossRefGoogle Scholar
  13. 13.
    D.L. Stojic, M.P. Marceta, S.P. Sovilj, S.S. Miljanic, Hydrogen generation from water electrolysis-Possibilities of energy saving. J. Power Sources 118, 315–319 (2003)CrossRefGoogle Scholar
  14. 14.
    S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)CrossRefGoogle Scholar
  15. 15.
    O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, (5362), 425–427 (1998)CrossRefGoogle Scholar
  16. 16.
    X. Feng, K. Shankar, C.K. Varghese, M. Paulose, T.J. Latemp, C.A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781–3786 (2008)CrossRefGoogle Scholar
  17. 17.
    E.Y. Kim, J.H. Park, C.Y. Han, J. Power Sources 184, 284 (2008)CrossRefGoogle Scholar
  18. 18.
    B. Liu, E.S. Aydril, J. Am. Chem. Soc. 131, 3985–3990 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y.P. Zhao, J.Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5(1), 104–111 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Wolcott, W.A. Smith, Y.P. Zhao, J.Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19(12), 1849–1856 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Wolcott, J.Z. Zhang, W.A. Smith, Y.P. Zhao, WO3 and ZnO nanostructures for photoelectrochemical generation of hydrogen from water splitting. Appl. Phys. Lett. (2008), to be submittedGoogle Scholar
  22. 22.
    X. Yang, A. Wolcottt, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9(6), 2331–2336 (2009)CrossRefGoogle Scholar
  23. 23.
    J.R. Bolton, Solar photoproduction of hydrogen: a review. Sol. Energy 57(1), 37–50 (1996)CrossRefGoogle Scholar
  24. 24.
    J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006)CrossRefGoogle Scholar
  25. 25.
    T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81(3), 454–456 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130(12), 4007–4015 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Tak, S.J. Hong, J.S. Lee, K. Yong, Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array. Crystal Growth Des. 9(6), 2627–2632 (2009)CrossRefGoogle Scholar
  28. 28.
    Y.L. Lee, B.M. Huang, H.T. Chien, Chem. Mater. 20(22), 6903 (2008)CrossRefGoogle Scholar
  29. 29.
    Y.W. Tang, X.Y. Hu, M.J. Chen, L.J. Luo, B.H. Li, L.Z. Zhang, Electrochim. Acta 42, 2742 (2009)Google Scholar
  30. 30.
    H. Zhang, X. Quan, S. Chen, H.T. Yu, N. Ma, Chem. Mater. 21(14), 3090 (2009)CrossRefGoogle Scholar
  31. 31.
    V. Chakrapani, J. Thangala, M.K. Sunkara, WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 34, 9050–9059 (2009)CrossRefGoogle Scholar
  32. 32.
    K.S. Ahn, S. Shet, T. Deutsch, C.S. Jiang, Y.F. Yan, M. Al-Jassim, J. Turner, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. J. Power Sources 176(1), 387–392 (2008)CrossRefGoogle Scholar
  33. 33.
    K.S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, M. Al-Jassim, ZnO nanocoral structures for photoelectrochemical cells. Appl. Phys. Lett. 93, 163117 (2008)CrossRefGoogle Scholar
  34. 34.
    N. Beermann, L. Vayssieres, S.E. Lindquist, A. Hagfeldt, Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147(7), 2456–2461 (2000)CrossRefGoogle Scholar
  35. 35.
    T. Lindgren, H.L. Wang, N. Beermann, L. Vayssieres, A. Hagfeldt, S.E. Lindquist, Sol. Energy Mater. Aqueous photoelectrochemistry of hematite nanorod array. Sol. Cells 71(2), 231–243 (2002)CrossRefGoogle Scholar
  36. 36.
    S. Saretni-Yarahmadi, K.G.U. Wijayantha, A.A. Tahir, B. Vaidhyanathan, Nanostructured alpha-Fe2O3 electrodes for solar driven water splitting: effect of doping agents on preparation and performance. J. Phys. Chem. C 113(12), 4768–4778 (2009)CrossRefGoogle Scholar
  37. 37.
    V.R. Satsangi, S. Kumari, A.P. Singh, R. Shrivastav, S. Dass, Int. J. Hydrogen Energy 33, 312 (2008)Google Scholar
  38. 38.
    M. Frites, S.U.M. Khan, Photoelectrochemical splitting of water to H2 and O2 at n-Fe2O3 nanowire films and nanocrystalline carbon-modified (CM)-n-Fe2O3 thin films. ECS Trans. 19(3), 137–145 (2009)CrossRefGoogle Scholar
  39. 39.
    P.R. Mishra, P.K. Shukla, O.N. Srivastava, Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes. Int. J. Hydrogen Energy 32(12), 1680–1685 (2007)CrossRefGoogle Scholar
  40. 40.
    S. Chen, M. Paulose, C. Ruan, G.K. Mor, O.K. Varghese, D. Kouzoudis, C.A. Grimes, Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J. Photochem. Photobio. A: Chem. 177, 177–184 (2006)CrossRefGoogle Scholar
  41. 41.
    D. Chen, Y.F. Gao, G. Wang, H. Zhang, W. Lu, J.H. Li, Surface tailoring for controlled photoelectrochemical properties: effect of patterned TiO2 microarrays. J. Phys. Chem. C 111(35), 13163–13169 (2007)CrossRefGoogle Scholar
  42. 42.
    C.J. Lin, Y.T. Lu, C.H. Hsieh, S.H. Chien, Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting. Appl. Phys. Lett. 94, 11 (2009)Google Scholar
  43. 43.
    D. Eder, M. Motta, A.H. Windle, Iron-doped Pt-TiO2 nanotubes for photo-catalytic water splitting. Nanotechnology 20, 5 (2009)Google Scholar
  44. 44.
    Y.J. Hwang, A. Boukai, P.D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9(1), 410–415 (2009)CrossRefGoogle Scholar
  45. 45.
    G.K. Mor, C.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latemp, K.S. Choi, C.A. Grimes, p-Type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906–1911 (2008)CrossRefGoogle Scholar
  46. 46.
    X. Cui, M. Ma, W. Zhang, Y.C. Yang, Z.J. Zhang, Nitrogen-doped TiO2 from TiN and its visible light photoelectrochemical properties. Electrochem. Commun. 10(3), 367–371 (2008)CrossRefGoogle Scholar
  47. 47.
    S.U.M. Khan, T. Sultana, Photoresponse of n-TiO2 thin film and nanowire electrodes. Sol. Energy Mater. Sol. Cells 76(2), 211–221 (2003)CrossRefGoogle Scholar
  48. 48.
    S. Takabayashi, R. Nakamura, Y. Nakato, A nano-modified Si/TiO2 composite electrode for efficient solar water splitting. J. Photochem. Photobio. A: Chem. 166(1–3), 107–113 (2004)CrossRefGoogle Scholar
  49. 49.
    J.H. Park, O.O. Park, S. Kim, Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide. Appl. Phys. Lett. 89, 16 (2006)Google Scholar
  50. 50.
    J.L. Blackburn, D.C. Selmarten, A.J. Nozik, Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition. J. Phys. Chem. B. 107, 14154–14157 (2003)CrossRefGoogle Scholar
  51. 51.
    M. Gratzel, Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 34, 8–13 (2005)CrossRefGoogle Scholar
  52. 52.
    W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc. 130(4), 1124–1125 (2008)CrossRefGoogle Scholar
  53. 53.
    R.F.G. Gardner, F. Sweett, D.W. Tanner, J. Phys. Chem. Solids 24, 1183 (1963)CrossRefGoogle Scholar
  54. 54.
    A.G. Joly, J.R. Williams, S.A. Chambers, G. Xiong, W.P. Hess, D.M. Laman, J. Appl. Phys. 99, 053521 (2006)CrossRefGoogle Scholar
  55. 55.
    J.H. Kennedy, K.W. Frese, J. Electrochem. Soc. 125(5), 709 (1978)CrossRefGoogle Scholar
  56. 56.
    L. Vayssieres, N. Beermann, S.E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides. Chem. Mater. 13(2), 233–235 (2001)CrossRefGoogle Scholar
  57. 57.
    L. Vayssieres, C. Sathe, S.M. Butorin, D.K. Shuh, J. Nordgren, J.H. Guo, One-dimensional quantum-confinement effect in a-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17, 2320–2323 (2005)CrossRefGoogle Scholar
  58. 58.
    P. Salvador, Hole diffusion length in n-TiO2 single crystals and sintered electrodes: photoelectrochemical determination and comparative analysis. J. Appl. Phys. 55(8), 2977–2985 (1983)CrossRefGoogle Scholar
  59. 59.
    E. Hendry, F. Wang, J. Shan, T.F. Heinz, M. Bonn, Electron transport in TiO2 probed by THz time-domain spectroscopy. Phys. Rev. B 69, 081101(R) (2004)CrossRefGoogle Scholar
  60. 60.
    G. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088–1092 (2010)CrossRefGoogle Scholar
  61. 61.
    L. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Low-temperature wafer scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42, 3031–3034 (2003)CrossRefGoogle Scholar
  62. 62.
    I. Bedja, S. Hotchandani, R. Carpentier, K. Vinodgopal, P.V. Kamat, Electrochromic and photoelectrochemical behavior of thin WO3 films prepared from quantized colloidal particles. Thin Solid Films 247, 195–200 (1994)CrossRefGoogle Scholar
  63. 63.
    I. Saeki, N. Okushi, H. Konno, R. Furuichi, The photoelectrochemical response of TiO2-WO3 mixed oxide films prepared by thermal oxidation of titanium coated with tungsten. J. Electrochem. Soc. 143(7), 2226–2230 (1996)CrossRefGoogle Scholar
  64. 64.
    Y.Q. Wang, H.M. Cheng, L. Zhang, Y.Z. Hao, J.M. Ma, B. Xu, W.H. Li, The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles. J. Mol. Catal. A-Chem. 151(1–2), 205–216 (2000)CrossRefGoogle Scholar
  65. 65.
    U.O. Krasovec, M. Topic, A. Georg, A. Georg, G. Drazic, Preparation and characterisation of nano-structured WO3-TiO2 layers for photoelectrochromic devices. J. Sol-Gel. Sci. Technol. 36(1), 45–52 (2005)CrossRefGoogle Scholar
  66. 66.
    C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becker, Structural stability and phase transitions in WO3 thin films. J. Phys. Chem. B 110(21), 10430–10435 (2006)CrossRefGoogle Scholar
  67. 67.
    A. Wolcott, T.R. Kuykendall, W. Chen, S.W. Chen, J.Z. Zhang, Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol). J. Phys. Chem. B 110(50), 25288–25296 (2006)CrossRefGoogle Scholar
  68. 68.
    J. Thangala, S. Vaddiraju, R. Bogale, R. Thurman, T. Powers, B. Deb, M.K. Sunkara, Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. Small 3(5), 890–896 (2007)CrossRefGoogle Scholar
  69. 69.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5(1), 191–195 (2005)CrossRefGoogle Scholar
  70. 70.
    S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J. Phys. Chem. C 111(24), 8677–8685 (2007)CrossRefGoogle Scholar
  71. 71.
    S.K. Mohapatra, V.K. Mahajan, M. Misra, Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting. Nanotechnology 18, 44 (2007)Google Scholar
  72. 72.
    S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246(2), 362–369 (2007)CrossRefGoogle Scholar
  73. 73.
    G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7(8), 2356–2364 (2007)CrossRefGoogle Scholar
  74. 74.
    C.K. Xu, Y.A. Shaban, W.B. Ingler, S.U.M. Khan, Sol. Energy Mater. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting. Sol. Cells 91(10), 938–943 (2007)CrossRefGoogle Scholar
  75. 75.
    Y.X. Yin, Z.G. Jin, F. Hou, Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays. Nanotechnology 18, 49 (2007)Google Scholar
  76. 76.
    O.K. Varghese, C.A. Grimes, Appropriate strategies for determining the photoconversion efficiency of water photo electrolysis cells: a review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 92(4), 374–384 (2008)CrossRefGoogle Scholar
  77. 77.
    S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, Water photoxidation by smooth and ultrathin a-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)Google Scholar
  78. 78.
    T.J. Latemp, X. Feng, M. Paulose, C.A. Grimes, Temperature-dependent growth of self-assembled hematite (a-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties. J. Phys. Chem. C 113, 16293–16298 (2009)CrossRefGoogle Scholar
  79. 79.
    W.B. Ingler, S.U.M. Khan, Int. J. Hydrogen Energy 30, 821 (2005)CrossRefGoogle Scholar
  80. 80.
    I. Cesar, A. Kay, J.A. Gonzalez Martinez, M. Gratzel, J. Am. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of si-doping. Chem. Soc. 128, 4582–4583 (2006)Google Scholar
  81. 81.
    I. Cesar, K. Sivula, A. Kay, R. Zboril, M. Gratzel, J. Phys. Chem. C 113, 772 (2009)CrossRefGoogle Scholar
  82. 82.
    Y. Yan, K.S. Ahn, S. Shet, T. Deutsch, M. Huda, S.H. Wei, J. Turner, M.M. Al-Jassim, Band gap reduction of ZnO for photoelectrichemical splitting of water. Sol. Hydrogen Nanotechnol. II Proc. SPIE 6650, 66500H (2007)CrossRefGoogle Scholar
  83. 83.
    K.R. Reyes-Gil, E.A. Reyes-Garcia, D. Raftery, Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111(39), 14579–14588 (2007)CrossRefGoogle Scholar
  84. 84.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle Scholar
  85. 85.
    S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908 (2003)CrossRefGoogle Scholar
  86. 86.
    T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett. 32, 364 (2003)CrossRefGoogle Scholar
  87. 87.
    N. Lu, X. Quan, J.Y. Li, S. Chen, H.T. Yu, G.H. Chen, Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 111, 11836–11842 (2007)CrossRefGoogle Scholar
  88. 88.
    Y. Su, S. Chen, X. Quan, H. Zhao, Y. Zhang, A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity. Appl. Surf. Sci. 255, 2167–2172 (2008)CrossRefGoogle Scholar
  89. 89.
    S.S. Kocha, J.A. Turner, A.J. Nozik, J. Electroanal. Chem. 367, 27 (1994)CrossRefGoogle Scholar
  90. 90.
    A.J. Nozik, Appl. Phys. Lett. 30, 567 (1977)CrossRefGoogle Scholar
  91. 91.
    H. Wang, T. Deutsch, J.A. Turner, Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155(5), F91–F96 (2008)CrossRefGoogle Scholar
  92. 92.
    K.S. Ahn, Y. Yan, S.H. Lee, T. Deutsch, J. Turner, C.E. Tracy, C.L. Perkins, M.M. Al-Jassim, Photoelectrochemical properties of N-incorporated ZnO films deposited by reactive RF magnetron sputtering. J. Electrochem. Soc. 154(9), B956–B959 (2007)CrossRefGoogle Scholar
  93. 93.
    K.S. Ahn, Y. Yan, S. Shet, T. Deutsch, J. Turner, M. Al-Jassim, Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Appl. Phys. Lett. 91, 231909 (2007)CrossRefGoogle Scholar
  94. 94.
    A. Kay, I. Cesar, M. Gratzel, New benchmark for water photooxidation by nanostructured a-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)CrossRefGoogle Scholar
  95. 95.
    P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112(48), 18737–18753 (2008)Google Scholar
  96. 96.
    I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128(7), 2385–2393 (2006)CrossRefGoogle Scholar
  97. 97.
    R.S. Dibbell, D.F. Watson, Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J. Phys. Chem. C 113(8), 3139–3149 (2009)CrossRefGoogle Scholar
  98. 98.
    S. Yamada, A.Y. Nosaka, Y. Nosaka, Fabrication of US photoelectrodes coated with titania nanosheets for water splitting with visible light. J. Electroanal. Chem. 585(1), 105–112 (2005)CrossRefGoogle Scholar
  99. 99.
    J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical applications. Nano Lett. 10, 478 (2010)CrossRefGoogle Scholar
  100. 100.
    Y.L. Lee, C.F. Chi, S.Y. Liau, CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem. Mater. 22(3), 922–927 (2010)CrossRefGoogle Scholar
  101. 101.
    L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91(2), 023116 (2007)CrossRefGoogle Scholar
  102. 102.
    O. Niitsoo, S.K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, G. Hodes, Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J. Photochem. Photobiol. A Chem. 181(2–3), 306–313 (2006)CrossRefGoogle Scholar
  103. 103.
    T. Lopez-Luke, A. Wolcott, L.P. Xu, S. Chen, Z. Wen, J.H. Li, E. De La Rosa, J.Z. Zhang, Nitrogen doped and CdSe quantum dot sensitized nanocrystalline TiO2 films for solar energy conversion applications. J. Phys. Chem. C 112, 1282–1292 (2008)CrossRefGoogle Scholar
  104. 104.
    K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydril, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)CrossRefGoogle Scholar
  105. 105.
    C. Ratanatawanate, C.R. Xiong, K.J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2(8), 1682–1688 (2008)CrossRefGoogle Scholar
  106. 106.
    J.H. Bang, P.V. Kamat, Solar cell by design. Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv. Funct. Mater. 20, 1970–1976 (2010)CrossRefGoogle Scholar
  107. 107.
    D.R. Baker, P.V. Kamat, Photosensitization of TiO2 nanostructures with CdS quantum dots. Particulate versus tubular support architectures. Adv. Funct. Mater. 19, 805–811 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations