Skip to main content

Three-Dimensional Micro/Nanomaterials Generated by Fiber-Drawing Nanomanufacturing

  • Chapter
  • First Online:

Abstract

Fiber drawing nanomanufacturing (FDN) is a new high-yield method to make three-dimensional (3D) ordered micro- and nanostructured materials. The main equipment used in the FDN process is a fiber draw tower, which is similar to those used in industry to make optical fibers for telecommunications. In FDN, glassy materials such as silicate glasses and polymers either in rod form or in tube form with appropriate filling materials can be drawn into fibrous building blocks (FBBs), which can be assembled into ordered 3D structures or ordered bundles of fibers for the next drawing. By repeating the same drawing process several times, the diameters of FBBs can be reduced from centimeters stepwise down to sub-micrometers, while preserving the ordered structures of FBBs. Depending on the properties of glassy materials, the filling materials of choice can be semiconductor materials, glasses, metallic wires, or organic materials. This chapter briefly summarizes several aspects of the FDN technique including material selection, draw process, size control, and assembly and also discusses various examples of FDN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Law, J. Goldberger, P. Yang, Annu. Rev. Mater. Res. 34, 83 (2004)

    Article  CAS  Google Scholar 

  2. J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, Y. Qian, Adv. Mater. 12, 1348 (2000)

    Google Scholar 

  3. G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature 393, 346 (1998)

    Article  CAS  Google Scholar 

  4. T. Hanrath, B. Korgel, Adv. Mater. 15, 437 (2003)

    Article  CAS  Google Scholar 

  5. C.J. Novotny, E.T. Yu, P.K.L. Yu, Nano Lett. 8, 775 (2008)

    Article  CAS  Google Scholar 

  6. S.H. Lee, T. Minegishi, J.S. Park, S.H. Park, J.S. Ha, H.J. Lee, H.J. Lee, S. Ahn, J. Kim, H. Jeon, T. Yao, Nano Lett. 8, 2419 (2008)

    Article  CAS  Google Scholar 

  7. M.S. Gudiksen, J. Wang, C.M. Lieber, J. Phys. Chem. B 105, 4062 (2001)

    Article  CAS  Google Scholar 

  8. S. Zhao, H. Roberge, A. Yelon, T. Veres, J. Am. Chem. Soc. 128, 12352 (2006)

    Article  CAS  Google Scholar 

  9. J. He, Y. Wan, J. Yu, Polymer 46, 2799 (2005)

    Article  CAS  Google Scholar 

  10. I.W. Donald, J. Mater. Sci. 22, 2661 (1987)

    CAS  Google Scholar 

  11. L. Tong, E. Mazur, J. Non-Cryst. Solids. 354, 1240 (2008)

    Article  CAS  Google Scholar 

  12. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)

    Article  CAS  Google Scholar 

  13. K.M. Ryan, A. Mastroianni, K.A. Stancil, H. Liu, A.P. Alivisatos, Nano Lett. 6, 1479 (2006)

    Article  CAS  Google Scholar 

  14. G. Yu, A. Cao, C.M. Lieber, Nat. Nanotechnol. 2, 372 (2007)

    Article  CAS  Google Scholar 

  15. P.J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, J. Liphardt, Nat. Mater. 5, 97 (2006)

    Article  CAS  Google Scholar 

  16. Y. Yang, S.C. Kung, D.K. Taggart, C. Xiang, F. Yang, M.A. Brown, A.G. Guell, T.J. Kruse, J.C. Hemminger, R.M. Penner, Nano Lett. 8, 2447 (2008)

    Article  CAS  Google Scholar 

  17. R.J. Tonucci, B.L. Justus, A.J. Campillo, C.E. Ford, Science 258, 783 (1992)

    Article  CAS  Google Scholar 

  18. S. Mondal, Appl. Thermal Eng. 28, 1536 (2008)

    Article  CAS  Google Scholar 

  19. S.X. Wang, Y. Li, J.Y. Hu, H. Tokura, Q.W. Song, Polym. Test. 25, 580 (2006)

    Article  CAS  Google Scholar 

  20. Y. Shin, D.I. Yoo, K. Son, J. Appl. Polym. Sci. 97, 910 (2005)

    Article  CAS  Google Scholar 

  21. X. Zhang, Z. Ma, Z. Yuan, M. Su, Adv. Mater. 20, 1310 (2008)

    Article  CAS  Google Scholar 

  22. Y. Li, J. Jiang, G. Xu, W. Li, L. Zhou, Y. Li, P. Cui, J. Alloys Compounds 480, 954 (2009)

    Article  CAS  Google Scholar 

  23. X. Zhao, S. Yang, Y. Cao, J. Mi, Q. Zhang, T. Zhu, J. Electron. Mater. 38, 1017 (2009)

    Article  CAS  Google Scholar 

  24. D. Teweldebrhan, V. Goyal, A.A. Balandin, Nano Lett. 10, 1209 (2010)

    Article  CAS  Google Scholar 

  25. Y. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, Appl. Phys. Lett. 81, 2403 (2002)

    Article  CAS  Google Scholar 

  26. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard Iii, J.R. Heath, Nature 451, 168 (2008)

    Google Scholar 

  27. L. Weber, E. Gmelin, Appl. Phys. A Mater. Sci. Proc. 53, 136 (1991)

    Article  Google Scholar 

  28. X. Chen, T.J. Zhu, X.B. Zhao, J. Crystal Growth 311, 3179 (2009)

    Article  CAS  Google Scholar 

  29. J.R. Sootsman, J. He, V.P. Dravid, S. Ballikaya, D. Vermeulen, C. Uher, M.G. Kanatzidis, Chem. Mater. 22, 869 (2010)

    Article  CAS  Google Scholar 

  30. Y. Hong, Z. Ma, C. Wang, L. Ma, M. Su, ACS Appl. Mater. Interfaces 1, 251 (2009)

    Article  CAS  Google Scholar 

  31. E. van Veenendaal, K. Sato, M. Shikida, J. van Suchtelen, Sens. Actuators A 93, 219 (2001)

    Article  Google Scholar 

  32. S. Tan, M.L. Reed, H. Han, R. Boudreau, J. Microelectromech. Syst. 5, 66 (1996)

    CAS  Google Scholar 

  33. A.J. Nijdam, E. van Veenendaal, J. van Suchtelen, M.L. Reed, J.G.E. Gardeniers, W.J.P. van Enckevort, E. Vlieg, M. Elwenspoek, J. Appl. Phys. 89, 4113 (2001)

    Article  CAS  Google Scholar 

  34. G.A.C.M. Spierings, J. Mater. Sci. 28, 6261 (1993)

    Article  CAS  Google Scholar 

  35. T. Diepold, E. Obermeier, J. Micromech. Microeng. 6, 29 (1996)

    Article  CAS  Google Scholar 

  36. T. Corman, P. Enoksson, G. Stemme, J. Micromech. Microeng. 8, 84 (1998)

    Article  CAS  Google Scholar 

  37. C. Iliescu, F.E.H. Tay, J. Miao, Sens. Actuators A 133, 395 (2007)

    Article  Google Scholar 

  38. B. D’Urso, J.T. Simpson, M. Kalyanaraman, J. Micromech. Microeng. 17, 717 (2007)

    Article  Google Scholar 

  39. Z. Ma, L. Ma, M. Su, Adv. Mater. 20, 3734 (2008)

    Article  CAS  Google Scholar 

  40. Z. Ma, Y. Hong, L. Ma, Y. Ni, S. Zou, M. Su, Langmuir 25, 643 (2008)

    Article  Google Scholar 

  41. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)

    Article  CAS  Google Scholar 

  42. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Article  CAS  Google Scholar 

  43. B. D’Urso, J.T. Simpson, Appl. Phys. Lett. 90, 044102 (2007)

    Article  Google Scholar 

  44. Z. Ma, Y. Hong, L. Ma, M. Su, Langmuir 25, 5446 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China

About this chapter

Cite this chapter

Ma, Z., Hong, Y., Ding, S., Zhang, M., Hossain, M., Su, M. (2011). Three-Dimensional Micro/Nanomaterials Generated by Fiber-Drawing Nanomanufacturing. In: Zhou, W., Wang, Z. (eds) Three-Dimensional Nanoarchitectures. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9822-4_5

Download citation

Publish with us

Policies and ethics