Skip to main content

Three-Dimensional Photovoltaic Devices Based on Vertically Aligned Nanowire Array

  • Chapter
  • First Online:
Three-Dimensional Nanoarchitectures
  • 2162 Accesses

Abstract

The development and application of nanotechnology in renewable energy has opened up new ways to pursue next-generation solar cells which can deliver high efficiency at an economically viable cost [1–2]. A number of nano-photovoltaic (PV) concepts based on semiconductor nanowires have been developed or proposed in recent years, with either inorganic–organic hybrid [3–6] or all-inorganic approaches [7–11]. Among these concepts, of great importance is the use of quasi-one-dimensional nanowire/nanorod array to construct three-dimensional architectures as building blocks for solar light harvesting. For photogenerated carrier collection, the quasi-one-dimensional system structure is perhaps the optimized choice for optoelectronic devices such as solar cells and photodetectors, because it allows for maximally taking the advantages of reduced dimensionality while retaining the last and only needed conduction channel. Besides the possibility of exploring quantum effects when reaching the nanoscopic scale [9–10], even in the mesoscopic scale where the lateral size falls below the carrier diffusion length, the quasi-one-dimensional system could be superior to the bulk material, for instance, by reducing the non-radiative recombination and carrier scattering loss [12–13], through elimination of the unnecessary lateral transport and the resulting recombination loss [14–15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007)

    Article  CAS  Google Scholar 

  2. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  3. M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943 (2004)

    Article  CAS  Google Scholar 

  4. J.B. Baxter, E.S. Aydil, Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86 (2005)

    Google Scholar 

  5. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  6. Y.M. Kang, N.G. Park, D. Kim, Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer. Appl. Phys. Lett. 86 (2005)

    Google Scholar 

  7. Q. Shen, K. Katayama, T. Sawada, M. Yamaguchi, T. Toyoda, Optical absorption, photoelectrochemical, and ultrafast carrier dynamic investigations of TiO2 electrodes composed of nanotubes and nanowires sensitized with CdSe quantum dots. Jpn. J. Appl. Phys. 45, 5569 (2006)

    Article  CAS  Google Scholar 

  8. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793 (2007)

    Article  CAS  Google Scholar 

  9. Y. Zhang, L.-W. Wang, A. Mascarenhas, “Quantum coaxial cables” for solar energy harvesting. Nano Lett. 7, 1264 (2007)

    Article  CAS  Google Scholar 

  10. J. Schrier, D.O. Demchenko, L.W. Wang, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, 2377 (2007)

    Article  CAS  Google Scholar 

  11. B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007)

    Article  CAS  Google Scholar 

  12. Y. Zhang, M.D. Sturge, K. Kash, B.P. van der Gaag, A.S. Gozdz, L.T. Florez, J.P. Harbison, Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots. Phys. Rev. B 51, 13303 (1995)

    Article  CAS  Google Scholar 

  13. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006)

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Pern, A. Mascarenhas, W. Zhou, Searching for optimal solar-cell architectures. SPIE Newroom (2008) doi: 10.1117/2.1200811.1388

    Google Scholar 

  15. K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, A. Mascarenhas, Direct growth of highly mismatched type IIZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248 (2008)

    Article  CAS  Google Scholar 

  16. O.L. Muskens, J.G. Rivas, R.E. Algra, Epam Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8, 2638 (2008)

    Google Scholar 

  17. U. Gangopadhyay, S.K. Dhungel, P.K. Basu, S.K. Dutta, H. Saha, J. Yi, Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication. Sol. Energy Mater. Sol. Cells 91, 285 (2007)

    Article  CAS  Google Scholar 

  18. Y. Inomata, K. Fukui, K. Shirasawa, Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method. Sol. Energy Mater. Sol. Cells 48, 237 (1997)

    Article  CAS  Google Scholar 

  19. Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, J.W. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 8, 1501 (2008)

    Article  CAS  Google Scholar 

  20. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239 (2010)

    Article  CAS  Google Scholar 

  21. G. Chen, J. Wu, Q.J. Lu, H.R.H. Gutierrez, Q. Xiong, M.E. Pellen, J.S. Petko, D.H. Werner, P.C. Eklund, Optical antenna effect in semiconducting nanowires. Nano Lett. 8, 1341 (2008)

    Article  Google Scholar 

  22. Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648 (2009)

    Article  CAS  Google Scholar 

  23. B. Liu E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009)

    Article  CAS  Google Scholar 

  24. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2, 1113 (2008)

    Article  CAS  Google Scholar 

  25. J. Wang, Z.Q. Lin, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22, 579 (2010)

    Article  CAS  Google Scholar 

  26. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc.130, 1124 (2008)

    Article  CAS  Google Scholar 

  27. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793 (2007)

    Article  CAS  Google Scholar 

  28. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized solar cells ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7, 2183 (2007)

    Article  CAS  Google Scholar 

  29. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008)

    CAS  Google Scholar 

  30. B. Li, L.D. Wang, B.N. Kang, P. Wang, Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90, 549 (2006)

    Article  CAS  Google Scholar 

  31. M. Toivola, J. Halme, K. Miettunen, K. Aitola, P.D. Lund, Nanostructured dye solar cells on flexible substrates-review. Int. J. Energy Res. 33, 1145 (2009)

    Article  CAS  Google Scholar 

  32. S. Anandan, Recent improvements and arising challenges in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 843 (2007)

    Article  CAS  Google Scholar 

  33. A.L. Roest, M.A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem, Epam Bakkers, Position-controlled epitaxial III-V nanowires on silicon. Nanotechnology 17, S271 (2006)

    Google Scholar 

  34. B. Mandl, J. Stangl, T. Martensson, A. Mikkelsen, J. Eriksson, L.S. Karlsson, G. Bauer, L. Samuelson, W. Seifert, Au-free epitaxial growth of InAs nanowires. Nano Lett. 6, 1817 (2006)

    Article  CAS  Google Scholar 

  35. S.G. Ihn, J.I. Song, T.W. Kim, D.S. Leem, T. Lee, S.G. Lee, E.K. Koh, K. Song, Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett.7, 39 (2007)

    Article  CAS  Google Scholar 

  36. Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 8, 4191 (2008)

    Article  CAS  Google Scholar 

  37. W. Wei, X.Y. Bao, C. Soci, Y. Ding, Z.L. Wang, D. Wang, Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. Nano Lett. 9, 2926 (2009)

    Article  CAS  Google Scholar 

  38. G.E. Cirlin, A.D. Bouravleuv, I.P. Soshnikov, Y.B. Samsonenko, V.G. Dubrovskii, E.M. Arakcheeva, E.M. Tanklevskaya, P. Werner, Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate. Nano Res. Lett. 5, 360 (2010)

    Article  CAS  Google Scholar 

  39. Y.J. Hwang, A. Boukai, P.D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009)

    Article  CAS  Google Scholar 

  40. Y.B. Guo, Y.J. Zhang, H.B. Liu, S.W. Lai, Y.L. Li, Y.J. Li, W.P. Hu, S. Wang, C.M. Che, D.B. Zhu, Assembled organic/inorganic p-n junction interface and photovoltaic cell on a single nanowire. J. Phys. Chem. Lett. 1, 327 (2010)

    Article  CAS  Google Scholar 

  41. T.J. Kempa, B.Z. Tian, D.R. Kim, J.S. Hu, X.L. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008)

    Article  CAS  Google Scholar 

  42. V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9, 1549 (2009)

    Article  CAS  Google Scholar 

  43. B.D. Yuhas, P. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131, 3756 (2009)

    Article  CAS  Google Scholar 

  44. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007)

    Article  CAS  Google Scholar 

  45. Y.J. Dong, B.Z. Tian, T.J. Kempa, C.M. Lieber, Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 9, 2183 (2009)

    Article  CAS  Google Scholar 

  46. Q.L. Bao, C.M. Li, L. Liao, H.B. Yang, W. Wang, C. Ke, Q.L. Song, H.F. Bao, T. Yu, K.P. Loh, J. Guo, Electrical transport and photovoltaic effects of core-shell CuO/C-60 nanowire heterostructure. Nanotechnology 20, 065203 (2009)

    Google Scholar 

  47. C. Colombo, M. Heiss, M. Gratzel, A.F.I. Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94 (2009)

    Google Scholar 

  48. T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology 19, 295203 (2008)

    Article  Google Scholar 

  49. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007)

    Google Scholar 

  50. B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97 (2005)

    Google Scholar 

  51. E.C. Garnett, P. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224 (2008)

    Article  CAS  Google Scholar 

  52. K.Q. Peng, X. Wang, L. Li, X.L. Wu, S.T. Lee, High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 132, 6872 (2010)

    Article  CAS  Google Scholar 

  53. S.E. Han, G. Chen, Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10, 1012 (2010)

    Article  CAS  Google Scholar 

  54. J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs core–shell nanowires for photovoltaic applications. Nano Lett. 9, 148 (2009)

    Article  CAS  Google Scholar 

  55. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Exp. 2 (2009)

    Google Scholar 

  56. M. Gratzel, Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  CAS  Google Scholar 

  57. C.C. Wang, L.C. Chen, T.C. Wang, Nanocrystalline TiO2 solar cells sensitized with chlorophyll and ZnSe quantum dots. J. Optoelectron. Adv. Mater. 11, 834 (2009)

    CAS  Google Scholar 

  58. P.R. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 110, 25451 (2006)

    Article  CAS  Google Scholar 

  59. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385 (2006)

    Article  CAS  Google Scholar 

  60. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002)

    Article  CAS  Google Scholar 

  61. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462 (2005)

    Article  CAS  Google Scholar 

  62. S. Kim, B. Fisher, H.J. Eisler, M. Bawendi, Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZinTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466 (2003)

    Article  CAS  Google Scholar 

  63. S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R.L. Snyder, Z.L. Wang, Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 130, 14958 (2008)

    Article  CAS  Google Scholar 

  64. J.J. Liu, M.H. Yu, W.L. Zhou, Well-aligned Mn-doped ZnO nanowires synthesized by a chemical vapor deposition method. Appl. Phys. Lett. 87, 172505 (2005)

    Article  Google Scholar 

  65. S.S. Lin, J.I. Hong, J.H. Song, Y. Zhu, H.P. He, Z. Xu, Y.G. Wei, Y. Ding, R.L. Snyder, Z.L. Wang, Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Lett. 9, 3877 (2009)

    Article  CAS  Google Scholar 

  66. W.N. Lee, M.C. Jeong, J.M. Myoung, Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal-organic chemical vapour deposition. Nanotechnology 15, 254 (2004)

    Article  CAS  Google Scholar 

  67. Y.S. Tian, C.G. Hu, Y.F. Xiong, B.Y. Wan, C.H. Xia, X.S. He, H. Liu, ZnO pyramidal arrays: novel functionality in antireflection. J. Phys. Chem. C 114, 10265 (2010)

    Article  CAS  Google Scholar 

  68. R. Tena-Zaera, J. Elias, C. Levy-Clement, ZnO nanowire arrays: optical scattering and sensitization to solar light. Appl. Phys. Lett. 93 (2008)

    Google Scholar 

  69. J.Y. Chen, K.W. Sun, Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells. Sol. Energy Mater. Sol. Cells 94, 930 (2010)

    Article  CAS  Google Scholar 

  70. L. Ae, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M.C. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se-2 thin film solar cells. Prog. Photovoltaics 18, 209 (2010)

    Article  Google Scholar 

  71. K. Wang, J.J. Chen, Z.M. Zeng, J. Tarr, W.L. Zhou, Y. Zhang, Y.F. Yan, C.S. Jiang, J. Pern, A. Mascarenhas, Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays. Appl. Phys. Lett. 96 (2010)

    Google Scholar 

  72. M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P.D. Yang, Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269 (2004)

    Article  CAS  Google Scholar 

  73. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007)

    Article  CAS  Google Scholar 

  74. M.Y. Lu, J.H. Song, M.P. Lu, C.Y. Lee, L.J. Chen, Z.L. Wang, ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3, 357 (2009)

    Article  CAS  Google Scholar 

  75. J. Yan, X.S. Fang, L.D. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, D. Golberg, Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. Nano Lett. 8, 2794 (2008)

    Article  CAS  Google Scholar 

  76. X. Wu, P. Jiang, Y. Ding, W. Cai, S.S. Xie, Z.L. Wang, Mismatch strain induced formation of ZnO/ZnS heterostructured rings. Adv. Mater. 19, 2319 (2007)

    Article  CAS  Google Scholar 

  77. H. Wang, M. Upmanyu, C.V. Ciobanu, Morphology of epitaxial core-shell nanowires. Nano Lett. 8, 4305 (2008)

    Article  CAS  Google Scholar 

  78. J.F. Scott, T.C. Damen, W.T. Silfvast, R.C.C. Leite, L.E. Cheesman, Resonant Raman scattering in ZnS and ZnSe with the cadmium laser. Opt. Commun. 1, 397 (1970)

    Article  CAS  Google Scholar 

  79. Y.Y. Luo, G.T. Duan, G.H. Li, Resonant Raman scattering and surface phonon modes of hollow ZnS microspheres. Appl. Phys. Lett. 90, 201911 (2007)

    Article  Google Scholar 

  80. B.B. Cao, J.J. Chen, X.J. Tang, W.L. Zhou, Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection. J. Mater. Chem. 19, 2323 (2009)

    Article  CAS  Google Scholar 

  81. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007)

    Article  CAS  Google Scholar 

  82. J. Zhu, C.M. Hsu, Z.F. Yu, S.H. Fan, Y. Cui, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979 (2010)

    Article  CAS  Google Scholar 

  83. Z.Y. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829 (2009)

    Article  Google Scholar 

  84. F. Boxberg, N. Sondergaard, H.Q. Xu, Photovoltaics with piezoelectric core-shell nanowires. Nano Lett. 10, 1108 (2010)

    Article  CAS  Google Scholar 

  85. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P.D. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the DARPA Grant No. HR0011-07-1-0032, research grants from Louisiana Board of Regents Contract No. LEQSF(2008-11)-RD-B-10, and American Chemical Society Petroleum Research Fund PRF No. 48796-DN110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilie Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China

About this chapter

Cite this chapter

Wang, K., Chen, J., Rai, S.C., Zhou, W. (2011). Three-Dimensional Photovoltaic Devices Based on Vertically Aligned Nanowire Array. In: Zhou, W., Wang, Z. (eds) Three-Dimensional Nanoarchitectures. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9822-4_16

Download citation

Publish with us

Policies and ethics