Three-Dimensional Photovoltaic Devices Based on Vertically Aligned Nanowire Array

  • Kai Wang
  • Jiajun Chen
  • Satish Chandra Rai
  • Weilie Zhou


The development and application of nanotechnology in renewable energy has opened up new ways to pursue next-generation solar cells which can deliver high efficiency at an economically viable cost [1–2]. A number of nano-photovoltaic (PV) concepts based on semiconductor nanowires have been developed or proposed in recent years, with either inorganic–organic hybrid [3–6] or all-inorganic approaches [7–11]. Among these concepts, of great importance is the use of quasi-one-dimensional nanowire/nanorod array to construct three-dimensional architectures as building blocks for solar light harvesting. For photogenerated carrier collection, the quasi-one-dimensional system structure is perhaps the optimized choice for optoelectronic devices such as solar cells and photodetectors, because it allows for maximally taking the advantages of reduced dimensionality while retaining the last and only needed conduction channel. Besides the possibility of exploring quantum effects when reaching the nanoscopic scale [9–10], even in the mesoscopic scale where the lateral size falls below the carrier diffusion length, the quasi-one-dimensional system could be superior to the bulk material, for instance, by reducing the non-radiative recombination and carrier scattering loss [12–13], through elimination of the unnecessary lateral transport and the resulting recombination loss [14–15].


Nanowire Array Shell Nanowire Copper Indium Gallium Selenide Nanopillar Array Silicon Nanowire Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the DARPA Grant No. HR0011-07-1-0032, research grants from Louisiana Board of Regents Contract No. LEQSF(2008-11)-RD-B-10, and American Chemical Society Petroleum Research Fund PRF No. 48796-DN110.


  1. 1.
    P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943 (2004)CrossRefGoogle Scholar
  4. 4.
    J.B. Baxter, E.S. Aydil, Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86 (2005)Google Scholar
  5. 5.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
  6. 6.
    Y.M. Kang, N.G. Park, D. Kim, Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer. Appl. Phys. Lett. 86 (2005)Google Scholar
  7. 7.
    Q. Shen, K. Katayama, T. Sawada, M. Yamaguchi, T. Toyoda, Optical absorption, photoelectrochemical, and ultrafast carrier dynamic investigations of TiO2 electrodes composed of nanotubes and nanowires sensitized with CdSe quantum dots. Jpn. J. Appl. Phys. 45, 5569 (2006)CrossRefGoogle Scholar
  8. 8.
    K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, L.-W. Wang, A. Mascarenhas, “Quantum coaxial cables” for solar energy harvesting. Nano Lett. 7, 1264 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Schrier, D.O. Demchenko, L.W. Wang, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, 2377 (2007)CrossRefGoogle Scholar
  11. 11.
    B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, M.D. Sturge, K. Kash, B.P. van der Gaag, A.S. Gozdz, L.T. Florez, J.P. Harbison, Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots. Phys. Rev. B 51, 13303 (1995)CrossRefGoogle Scholar
  13. 13.
    Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, J. Pern, A. Mascarenhas, W. Zhou, Searching for optimal solar-cell architectures. SPIE Newroom (2008) doi: 10.1117/2.1200811.1388Google Scholar
  15. 15.
    K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, A. Mascarenhas, Direct growth of highly mismatched type IIZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248 (2008)CrossRefGoogle Scholar
  16. 16.
    O.L. Muskens, J.G. Rivas, R.E. Algra, Epam Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8, 2638 (2008)Google Scholar
  17. 17.
    U. Gangopadhyay, S.K. Dhungel, P.K. Basu, S.K. Dutta, H. Saha, J. Yi, Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication. Sol. Energy Mater. Sol. Cells 91, 285 (2007)CrossRefGoogle Scholar
  18. 18.
    Y. Inomata, K. Fukui, K. Shirasawa, Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method. Sol. Energy Mater. Sol. Cells 48, 237 (1997)CrossRefGoogle Scholar
  19. 19.
    Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, J.W. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett. 8, 1501 (2008)CrossRefGoogle Scholar
  20. 20.
    M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239 (2010)CrossRefGoogle Scholar
  21. 21.
    G. Chen, J. Wu, Q.J. Lu, H.R.H. Gutierrez, Q. Xiong, M.E. Pellen, J.S. Petko, D.H. Werner, P.C. Eklund, Optical antenna effect in semiconducting nanowires. Nano Lett. 8, 1341 (2008)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648 (2009)CrossRefGoogle Scholar
  23. 23.
    B. Liu E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar
  24. 24.
    D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2, 1113 (2008)CrossRefGoogle Scholar
  25. 25.
    J. Wang, Z.Q. Lin, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22, 579 (2010)CrossRefGoogle Scholar
  26. 26.
    W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J. Am. Chem. Soc.130, 1124 (2008)CrossRefGoogle Scholar
  27. 27.
    K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793 (2007)CrossRefGoogle Scholar
  28. 28.
    A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized solar cells ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7, 2183 (2007)CrossRefGoogle Scholar
  29. 29.
    P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008)Google Scholar
  30. 30.
    B. Li, L.D. Wang, B.N. Kang, P. Wang, Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 90, 549 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Toivola, J. Halme, K. Miettunen, K. Aitola, P.D. Lund, Nanostructured dye solar cells on flexible substrates-review. Int. J. Energy Res. 33, 1145 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Anandan, Recent improvements and arising challenges in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 843 (2007)CrossRefGoogle Scholar
  33. 33.
    A.L. Roest, M.A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem, Epam Bakkers, Position-controlled epitaxial III-V nanowires on silicon. Nanotechnology 17, S271 (2006)Google Scholar
  34. 34.
    B. Mandl, J. Stangl, T. Martensson, A. Mikkelsen, J. Eriksson, L.S. Karlsson, G. Bauer, L. Samuelson, W. Seifert, Au-free epitaxial growth of InAs nanowires. Nano Lett. 6, 1817 (2006)CrossRefGoogle Scholar
  35. 35.
    S.G. Ihn, J.I. Song, T.W. Kim, D.S. Leem, T. Lee, S.G. Lee, E.K. Koh, K. Song, Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Lett.7, 39 (2007)CrossRefGoogle Scholar
  36. 36.
    Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett. 8, 4191 (2008)CrossRefGoogle Scholar
  37. 37.
    W. Wei, X.Y. Bao, C. Soci, Y. Ding, Z.L. Wang, D. Wang, Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. Nano Lett. 9, 2926 (2009)CrossRefGoogle Scholar
  38. 38.
    G.E. Cirlin, A.D. Bouravleuv, I.P. Soshnikov, Y.B. Samsonenko, V.G. Dubrovskii, E.M. Arakcheeva, E.M. Tanklevskaya, P. Werner, Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate. Nano Res. Lett. 5, 360 (2010)CrossRefGoogle Scholar
  39. 39.
    Y.J. Hwang, A. Boukai, P.D. Yang, High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 9, 410 (2009)CrossRefGoogle Scholar
  40. 40.
    Y.B. Guo, Y.J. Zhang, H.B. Liu, S.W. Lai, Y.L. Li, Y.J. Li, W.P. Hu, S. Wang, C.M. Che, D.B. Zhu, Assembled organic/inorganic p-n junction interface and photovoltaic cell on a single nanowire. J. Phys. Chem. Lett. 1, 327 (2010)CrossRefGoogle Scholar
  41. 41.
    T.J. Kempa, B.Z. Tian, D.R. Kim, J.S. Hu, X.L. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008)CrossRefGoogle Scholar
  42. 42.
    V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett. 9, 1549 (2009)CrossRefGoogle Scholar
  43. 43.
    B.D. Yuhas, P. Yang, Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 131, 3756 (2009)CrossRefGoogle Scholar
  44. 44.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885 (2007)CrossRefGoogle Scholar
  45. 45.
    Y.J. Dong, B.Z. Tian, T.J. Kempa, C.M. Lieber, Coaxial group III-nitride nanowire photovoltaics. Nano Lett. 9, 2183 (2009)CrossRefGoogle Scholar
  46. 46.
    Q.L. Bao, C.M. Li, L. Liao, H.B. Yang, W. Wang, C. Ke, Q.L. Song, H.F. Bao, T. Yu, K.P. Loh, J. Guo, Electrical transport and photovoltaic effects of core-shell CuO/C-60 nanowire heterostructure. Nanotechnology 20, 065203 (2009)Google Scholar
  47. 47.
    C. Colombo, M. Heiss, M. Gratzel, A.F.I. Morral, Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94 (2009)Google Scholar
  48. 48.
    T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Silicon nanowire-based solar cells. Nanotechnology 19, 295203 (2008)CrossRefGoogle Scholar
  49. 49.
    L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007)Google Scholar
  50. 50.
    B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 97 (2005)Google Scholar
  51. 51.
    E.C. Garnett, P. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224 (2008)CrossRefGoogle Scholar
  52. 52.
    K.Q. Peng, X. Wang, L. Li, X.L. Wu, S.T. Lee, High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 132, 6872 (2010)CrossRefGoogle Scholar
  53. 53.
    S.E. Han, G. Chen, Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10, 1012 (2010)CrossRefGoogle Scholar
  54. 54.
    J.A. Czaban, D.A. Thompson, R.R. LaPierre, GaAs core–shell nanowires for photovoltaic applications. Nano Lett. 9, 148 (2009)CrossRefGoogle Scholar
  55. 55.
    H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, T. Fukui, Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Exp. 2 (2009)Google Scholar
  56. 56.
    M. Gratzel, Photoelectrochemical cells. Nature 414, 338 (2001)CrossRefGoogle Scholar
  57. 57.
    C.C. Wang, L.C. Chen, T.C. Wang, Nanocrystalline TiO2 solar cells sensitized with chlorophyll and ZnSe quantum dots. J. Optoelectron. Adv. Mater. 11, 834 (2009)Google Scholar
  58. 58.
    P.R. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J. Phys. Chem. B 110, 25451 (2006)CrossRefGoogle Scholar
  59. 59.
    I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385 (2006)CrossRefGoogle Scholar
  60. 60.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002)CrossRefGoogle Scholar
  61. 61.
    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462 (2005)CrossRefGoogle Scholar
  62. 62.
    S. Kim, B. Fisher, H.J. Eisler, M. Bawendi, Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZinTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466 (2003)CrossRefGoogle Scholar
  63. 63.
    S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R.L. Snyder, Z.L. Wang, Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 130, 14958 (2008)CrossRefGoogle Scholar
  64. 64.
    J.J. Liu, M.H. Yu, W.L. Zhou, Well-aligned Mn-doped ZnO nanowires synthesized by a chemical vapor deposition method. Appl. Phys. Lett. 87, 172505 (2005)CrossRefGoogle Scholar
  65. 65.
    S.S. Lin, J.I. Hong, J.H. Song, Y. Zhu, H.P. He, Z. Xu, Y.G. Wei, Y. Ding, R.L. Snyder, Z.L. Wang, Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Lett. 9, 3877 (2009)CrossRefGoogle Scholar
  66. 66.
    W.N. Lee, M.C. Jeong, J.M. Myoung, Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal-organic chemical vapour deposition. Nanotechnology 15, 254 (2004)CrossRefGoogle Scholar
  67. 67.
    Y.S. Tian, C.G. Hu, Y.F. Xiong, B.Y. Wan, C.H. Xia, X.S. He, H. Liu, ZnO pyramidal arrays: novel functionality in antireflection. J. Phys. Chem. C 114, 10265 (2010)CrossRefGoogle Scholar
  68. 68.
    R. Tena-Zaera, J. Elias, C. Levy-Clement, ZnO nanowire arrays: optical scattering and sensitization to solar light. Appl. Phys. Lett. 93 (2008)Google Scholar
  69. 69.
    J.Y. Chen, K.W. Sun, Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells. Sol. Energy Mater. Sol. Cells 94, 930 (2010)CrossRefGoogle Scholar
  70. 70.
    L. Ae, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, M.C. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se-2 thin film solar cells. Prog. Photovoltaics 18, 209 (2010)CrossRefGoogle Scholar
  71. 71.
    K. Wang, J.J. Chen, Z.M. Zeng, J. Tarr, W.L. Zhou, Y. Zhang, Y.F. Yan, C.S. Jiang, J. Pern, A. Mascarenhas, Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays. Appl. Phys. Lett. 96 (2010)Google Scholar
  72. 72.
    M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P.D. Yang, Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269 (2004)CrossRefGoogle Scholar
  73. 73.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007)CrossRefGoogle Scholar
  74. 74.
    M.Y. Lu, J.H. Song, M.P. Lu, C.Y. Lee, L.J. Chen, Z.L. Wang, ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano 3, 357 (2009)CrossRefGoogle Scholar
  75. 75.
    J. Yan, X.S. Fang, L.D. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, D. Golberg, Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. Nano Lett. 8, 2794 (2008)CrossRefGoogle Scholar
  76. 76.
    X. Wu, P. Jiang, Y. Ding, W. Cai, S.S. Xie, Z.L. Wang, Mismatch strain induced formation of ZnO/ZnS heterostructured rings. Adv. Mater. 19, 2319 (2007)CrossRefGoogle Scholar
  77. 77.
    H. Wang, M. Upmanyu, C.V. Ciobanu, Morphology of epitaxial core-shell nanowires. Nano Lett. 8, 4305 (2008)CrossRefGoogle Scholar
  78. 78.
    J.F. Scott, T.C. Damen, W.T. Silfvast, R.C.C. Leite, L.E. Cheesman, Resonant Raman scattering in ZnS and ZnSe with the cadmium laser. Opt. Commun. 1, 397 (1970)CrossRefGoogle Scholar
  79. 79.
    Y.Y. Luo, G.T. Duan, G.H. Li, Resonant Raman scattering and surface phonon modes of hollow ZnS microspheres. Appl. Phys. Lett. 90, 201911 (2007)CrossRefGoogle Scholar
  80. 80.
    B.B. Cao, J.J. Chen, X.J. Tang, W.L. Zhou, Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection. J. Mater. Chem. 19, 2323 (2009)CrossRefGoogle Scholar
  81. 81.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007)CrossRefGoogle Scholar
  82. 82.
    J. Zhu, C.M. Hsu, Z.F. Yu, S.H. Fan, Y. Cui, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979 (2010)CrossRefGoogle Scholar
  83. 83.
    Z.Y. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Challenges and prospects of nanopillar-based solar cells. Nano Res. 2, 829 (2009)CrossRefGoogle Scholar
  84. 84.
    F. Boxberg, N. Sondergaard, H.Q. Xu, Photovoltaics with piezoelectric core-shell nanowires. Nano Lett. 10, 1108 (2010)CrossRefGoogle Scholar
  85. 85.
    A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P.D. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC outside the People's Republic of China, Weilie Zhou and Zhong Lin Wang in the People's Republic of China 2011

Authors and Affiliations

  • Kai Wang
    • 1
  • Jiajun Chen
    • 1
  • Satish Chandra Rai
    • 1
  • Weilie Zhou
    • 1
  1. 1.Advanced Materials Research InstituteUniversity of New OrleansNew OrleansUSA

Personalised recommendations