Advertisement

Evidence of piezonuclear reactions: From geological and tectonic transformations to neutron detection and measurements

  • A. Carpinteri
  • G. Lacidogna
  • A. Manuello
  • O. Borla
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Neutron emission measurements, by means of helium-3 and neutron bubble detectors, were performed on solid specimens during three different kinds of mechanical tests: compression tests under displacement control, under cyclic loading, and by ultrasonic vibration. The material used for the tests was Green Luserna granite. Since the analyzed material contains iron, our conjecture was that piezonuclear fission reactions involving fission of iron into aluminum, and of iron into magnesium and silicon, should have occurred during compression damage and failure. It is also interesting to emphasize that the present natural abundances of aluminum (~8%), and silicon (28%) and scarcity of iron (~4%) in the continental Earth’s crust should be possibly due to the piezonuclear fission reactions considered above.

Keywords

Compression Test Displacement Control Recycle Aggregate Neutron Emission Ultrasonic Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cardone, F., Carpinteri, A., Lacidogna, G. Piezonuclear neutrons from fracturing of inert solids. Physics Letters A. 373. 4158–4163. (2009).Google Scholar
  2. 2.
    Carpinteri, A., Cardone, F., Lacidogna G. Piezonuclear neutrons from brittle fracture: Early results of mechanical compression tests. Strain. 45. 332–339. (2009).Google Scholar
  3. 3.
    Carpinteri, A., Cardone, F., Lacidogna G. Energy emissions from failure phenomena: Mechanical, electromagnetic, nuclear. Experimental Mechanics. doi:  10.1007/s11340-009-9325-7.
  4. 4.
    Bubble Technology Industries, Instruction manual for the Bubble detector, Chalk River, Ontario, Canada (1992).Google Scholar
  5. 5.
    National Council on Radiation Protection and Measurements, Protection Against Neutron Radiation, NCRP Report 38 (1971).Google Scholar
  6. 6.
    Vola, G., Marchi, M. Mineralogical and petrographic quantitative analysis of a recycled aggregate from quarry wastes. The Luserna stone case-study. Proc of the 12th Euroseminar on Microscopy Applied to Building Materials, 15–19 September 2009, Dortmund, Germany. (2009).Google Scholar
  7. 7.
    Kuzhevskij, B. M., Yu. Nechaev, O., Sigaeva, E. A., Zakharov, V. A. Neutron flux variations near the Earth’s crust. A possible tectonic activity detection. Natural Hazards and Earth System Sciences. 3. 637–645. (2003).Google Scholar
  8. 8.
    Kuzhevskij, B. M., Yu. Nechaev, O., Sigaeva, E. A. Distribution of neutrons near the Earth’s surface. Natural Hazards and Earth System Sciences. 3. 255–262. (2003)Google Scholar
  9. 9.
    Volodichev, N.N., Kuzhevskij, B.M., Nechaev, O.Yu., Panasyuk, M.I., Podorolsky, A.N.,. Shavrin, P.I. Sun-Moon-Earth connections: The neutron intensity splashes and seismic activity. Astron. Vestnik. 34(2). 188–190. (2000).Google Scholar
  10. 10.
    Favero, G., and Jobstraibizer, P. The distribution of aluminum in the Earth: from cosmogenesis to Sial evolution. Coordination Chemistry Reviews. 149. 467–400. (1996).Google Scholar
  11. 11.
    Taylor, S. R. and McLennan, S. M. The geochemical evolution of the continental crust. Reviews of Geophysics. 33(2). 241–265. (1995).CrossRefGoogle Scholar
  12. 12.
    Taylor, S.R. and McLennan, S. M. Planetary Crusts: Their Composition, Origin and Evolution, Cambridge University Press, Cambridge. (2009).Google Scholar
  13. 13.
    Anbar, A. D. Elements and evolution. Science. 322. 1481–1482. (2008).Google Scholar
  14. 14.
    Lunine E, J. I. Earth: Evolution of a Habitable World. Cambridge University Press, Cambridge, New York, Melbourne. (1998).Google Scholar
  15. 15.
    Hazen et al. Mineral evolution, American Mineralogist. 93. 1693–1720. (2008).Google Scholar
  16. 16.
    Condie, K. C. Plate Tectonics and crustal evolution. Pergamon Press, New York, Toronto, Oxford, Sydney, Braunshweig, Paris. (1976).Google Scholar
  17. 17.
    Roy, I., Sarkar, B. C., Chattopadhyay, A. MINFO-a prototype mineral information database for iron ore resourcers of India. Computers and Geosciences. 27. 357–361. (2001)Google Scholar
  18. 18.
    World Iron Ore producers. Available at http://www.mapsofworld.com/minerals/world-iron-oreproducers. html; last accessed October 2009.
  19. 19.
    World Mineral Resources Map. Available at http://www.mapsofworld.com/world-mineral-map.htm; last accessed October 2009.
  20. 20.
    Key Iron Deposits of the World. Available at http://www.portergeo.com.au/tours/iron2002/- iron2002depm2b.asp; last accessed October 2009.
  21. 21.
    Konhauser, K.O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature. 458. 750–754. (2009).Google Scholar
  22. 22.
    Saito, M. A. Less nickel for more oxygen. Nature. 458. 714–715. (2009).Google Scholar
  23. 23.
    Rudnick, R. L. and Fountain, D. M. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics. 33(3). 267–309. (1995).CrossRefGoogle Scholar
  24. 24.
    Egami, F. Minor elements and evolution. Journal of Molecular Evolution. 4(2). 113–120. (1975).CrossRefGoogle Scholar
  25. 25.
    Natl. Academy of Sciences. Medical and Biological Effects of Environmental Pollutants: Nickel. Proc. Natl Acad Sci. Washington, DC. (1975).Google Scholar
  26. 26.
    Doglioni, C. Interno della Terra, Treccani, Enciclopedia Scienza e Tecnica, 595–605. (2007).Google Scholar
  27. 27.
    Foing, B. Earth’s childhood attic. Astrobiological Magazine: Retrospection (on-line) February 23. (2005).Google Scholar

Copyright information

© Springer Science+Businees Media, LLC 2011

Authors and Affiliations

  • A. Carpinteri
    • 1
  • G. Lacidogna
    • 1
  • A. Manuello
    • 1
  • O. Borla
    • 1
    • 2
  1. 1.Department of Structural Engineering & GeotechnicsPolitecnico di TorinoTorinoItaly
  2. 2.Istituto Nazionale di Fisica Nucleare, INFN sez. TorinoTorinoItaly

Personalised recommendations