Advertisement

Theoretical and computational modelling of instrumented indentation of viscoelastic composites

  • Yan-Ping Cao
  • Ke-Lin Chen
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

In this study, we investigate the indentation of viscoelastic composites by using a combination of theoretical and computational analysis. The composite is assumed to consist of two phases, i.e., the filler and the matrix, and they are linear elastic and linear viscoelastic material, respectively. Two cases are investigated: 1). hard fillers are embedded in a very soft matrix; 2). the matrix is much harder than the fillers. Particular attention is paid to the correlation between the indentation responses and the relaxation properties of the composites and the constituent. To this end, we first perform a theoretical analysis which is followed by a series of finite element computations. A number of conclusions have been drawn based on the theoretical and computational results, which may improve the current understanding of the indentation of viscoelastic composite materials, including some man-made biocomposites as well as biological soft tissues.

Keywords

Indentation viscoelastic composites finite element simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABAQUS User’s Manual, version 6.8. Providence: Hibbit, Karlsson &; Sorenson, 2008.Google Scholar
  2. Barenblatt, G. I., Scaling, self-similarity and intermediate asymptotics, Cambridge University Press, Cambridge, UK., 1996.Google Scholar
  3. Cao,Y. P., Ma, D. C., Raabe, D. The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate, Acta Biomaterialia 5 (2009) 240–248.CrossRefGoogle Scholar
  4. Cao, Y. P., Ji, X. Y., Feng, X. Q., (2010). Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation, Philosophical Magazine, in press.Google Scholar
  5. Cao, Y. P. Determination of the creep exponent of a power-law creep solid using indentation tests, Mechanics of Time-Dependent Materials 11 (2007) 159–172.Google Scholar
  6. Cheng, Y. T., Cheng, C. M. Scaling, dimensional analysis, and indentation measurements, Materials Science &; Engineering R-Reports 44 (2004) 91–149.CrossRefGoogle Scholar
  7. Cheng, Y. T., Yang, F. Q. Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles, Journal of Materials Research 24 (2009) 3013–3017.CrossRefGoogle Scholar
  8. Cheng, Y. T., Ni, W. Y., Cheng, C. M. Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids, Physical Review Letters 97 (2006) 075506.CrossRefGoogle Scholar
  9. Ebenstein, D. M., Pruitt, L. A. Nanoindentation of biological materials. Nano Today 1 (2006) 26.CrossRefGoogle Scholar
  10. Fischer-Cripps, A. C. Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 19 (2004) 2981–2989.CrossRefGoogle Scholar
  11. Fung, Y. C., Biomechanics: Mechanical properties of living tissues. Springer, New York, Inc., 1993.Google Scholar
  12. Giannakopoulos, A. E. Elastic and viscoelastic indentation of flat surfaces by pyramid indentors, Journal of the Mechanics and Physics of Solids 54 (2006) 1305–1332.Google Scholar
  13. Graham, G. A. C. The contact problem in the linear theory of viscoelasticityGoogle Scholar
  14. International Journal Of Engineering Science 3 (1965) 27–45.Google Scholar
  15. Herbert, E. G., Oliver, W. C. Lumsdaine, A,, Pharr, G. M. Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation, Journal of Materials Research 24 (2009) 626–637.Google Scholar
  16. Huang, G., Lu, H. B. Measurement of Young's relaxation modulus using nanoindentation, Mechanics of Time-Dependent Materials 10 (2006) 229–243.MathSciNetCrossRefGoogle Scholar
  17. Levental, I., Georges, P. C. and Janmey, P. A., Soft biological materials and their impact on cell function, Soft Matter 3 (2007) 299–206.CrossRefGoogle Scholar
  18. Lee, E. H., Radok, J. R. M. The contact problem for viscoelastic bodies, Journal of Applied Mechanics 27 (1960) 438–444.MathSciNetMATHCrossRefGoogle Scholar
  19. Lee, B., Han, L., Frank, E. H., Chubinskaya, S., Ortiz, C., Grodzinsky, A. J.Google Scholar
  20. Dynamic mechanical properties of the tissue-engineered matrix associated with individual chondrocytes. J. Biomech. 43 (2010) 469–476.CrossRefGoogle Scholar
  21. Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H. Measurement of creep compliance of solid polymers by nanoindentation, Mechanics of Time-Dependent Materials 7 (2003) 189–207.CrossRefGoogle Scholar
  22. Ngan, A. H. W., Wang, H. T., Tang, B., Sze, K. Y. Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation, International Journal of Solids and Structures 42 (2005) 1831–1846.MATHCrossRefGoogle Scholar
  23. Oyen, M. L., Cook, R. F. J. Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater Res 18 (2003) 139.CrossRefGoogle Scholar
  24. Oyen, M. L. Spherical indentation creep following ramp loading, Journal of Mater.Res. 20 (2005) 2094–2100.Google Scholar
  25. Oyen, M. L., Sensitivity of polymer nanoindentation creep measurements toexperimental variables. Acta Mater. 55 (2007) 3633.CrossRefGoogle Scholar
  26. Ramakrishna, S., Huang Z. M., Kumar G. V., Batchelor,A. W., Mayer J., An introduction to biocomposites. Imperial college press, London, 2004.CrossRefGoogle Scholar
  27. Shimizu, S., Yanagimoto, T., Sakai, M. Pyramidal indentation load-depth curve of viscoelastic materials, Journal of Materials Research 14 (1999) 4075–4086.CrossRefGoogle Scholar
  28. Thomas,V., Dean,D. R., Jose,M. V., Mathew,B., Chowdhury, S., and Vohra Y. K., Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite, Biomacromolecules 8, (2007) 631–637.CrossRefGoogle Scholar
  29. Ting, T. C. T. Contact stresses between a rigid indenter and a viscoelastic half-space,Journal of Applied Mechanics 33 (1966) 845–854.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Applied Mechanics Lab, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations