Mechanical Characterization of Nanowires Using a Customized Atomic Force Microscope

Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

A new experimental method is introduced in order to characterize the mechanical properties of mettalic nanowires. An accurate mechanical characterization of nanowires requires the imaging with scanning electron microscope (SEM) and the bending of nanowires with an atomic force microscope (AFM). In this study, an AFM is located inside an SEM in order to establish the visibility of the nanowires. The tip of the AFM cantilever is utilized to bend and break the nanowires. Nanowire specimens are prepared by electroplating of metal ions into the nanoscale pores of the alumina memberanes. The mechanical properties are extracted by using analytical formulation along with the experimental force versus bending displacement response. Preliminary results revealed that copper nanowires have unique mechanical properties such as high flexibility in addition to high strength compared to their bulk counterparts.

Keywords

EHDP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Z. L., Mechanical properties of nanowires and nanobelts, Dekker Encyclopedia of Nanoscience and Nanotechnology, pp.1773-85, 2004.Google Scholar
  2. 2.
    Liu. K. H., Wang W. L., Xu Z., Liao L., Bai X. D., and Wang E. G., In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope, Applied Physics Letters, Vol. 86, 22908, 2006.Google Scholar
  3. 3.
    Huang Y., Bai X. and Zhang Y., In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles, Journal of Physics: Condensed Matter, Vol. 18, pp. L179-84, 2006.CrossRefGoogle Scholar
  4. 4.
    Chen C. Q., Shi Y., Zhang Y. S., Zhu J., and Yan Y. J., Size dependence of Young’s modulus in ZnO nanowires, Physical Review Letters, Vol. 96, 075505, 2006.CrossRefGoogle Scholar
  5. 5.
    Yu M. F., Lourie O., Dyer M. J., Moloni K., Kelly T. F., Ruoff R. S., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, Vol. 287, pp. 637–640, 2000.CrossRefGoogle Scholar
  6. 6.
    Lin C.H., Chang M., Li X. and Deka J.R., Measurement of Mechanical Properties of Boron Nanowire Using Nanomanipulation System, Proceedings of the 35th International MATADOR Conference, pp.275 278, 2007.Google Scholar
  7. 7.
    Paulo S., Bokor J., Howe R. T., He R., Yang P., Gao D., Carraro C., and Maboudian R., Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor-liquid-solid method, Applied Physics Letters, Vol. 87, 053111, 2005.CrossRefGoogle Scholar
  8. 8.
    Ni H., Li X., and Gao H., Elastic modulus of amorphous SiO2 nanowires, Applied Physics Letters, Vol. 88, 043108, 2006.CrossRefGoogle Scholar
  9. 9.
    Wu B., Heidelberg A. and Boland J. J., Mechanical properties of ultrahigh-strength gold nanowires, Nature Materials, Vol. 4, pp. 525–9, 2005.CrossRefGoogle Scholar
  10. 10.
    Schwarz U. D., Ster P. K., and Wiesendanger R., Quantitative analysis of lateral force microscopy experiments, Rev. Sci. Instrum., Vol. 67 (7), 1996.Google Scholar
  11. 11.
    Heidelberg A., Ngo L. T., Wu B., Phillips M. A., Sharma S.,‡ Kamins T. I., Sader J. E., and Boland J. J., A Generalized Description of the Elastic Properties of Nanowires, Nano Letters, Vol. 6, No. 6, pp. 1101–6, 2006.Google Scholar
  12. 12.
    Ngo L. T., Almecija D., Sader J. E. Daly B., Petkov N., Holmes J. D., Erts D., and Boland J. J., Mechanical properties of individual electrospun polymer-nanotube composite nanofibers, Carbon, vol47, pp. 2253–8, 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Aerospace and Mechanical EngineeringThe University of ArizonaTucsonUSA

Personalised recommendations