Skip to main content

Medical Image Volumetric Visualization: Algorithms, Pipelines, and Surgical Applications

  • Chapter
  • First Online:
Medical Image Processing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

With the increasing availability of high-resolution datasets of 3D medical images, the development of volumetric image rendering techniques have become an important complement to classical surface-based rendering. Since volumetric visualization does not require that surfaces be selected from within the 3D volumes, the full volume dataset is maintained during the rendering process. These methods are based on a foundation of projecting rays through volumes, which have a range of opacity attributes, onto a viewing window. Volume rendering is computationally demanding, and the ever increasing size of medical image datasets means that brute-force algorithms are not feasible for interactive use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baek, S.Y., Sheafor, D.H., Keogan, M.T., DeLong, D.M., Nelson,R.C.: Two-dimensional multiplanar and three-dimensional volume-rendered vascular CT in pancreatic carcinoma: Interobserver agreement and comparison with standard helical techniques. Am. J. Roentgenol. 176(6), 1467–1473 (2001)

    Google Scholar 

  2. Shekhar, R., Zagrodsky, V.: Cine MPR: interactive multiplanar reformatting of four-dimensional cardiac data using hardware-accelerated texture mapping. IEEE Trans. Inf. Technol. Biomed. 7(4), 384–393 (2003)

    Article  Google Scholar 

  3. Tatarchuk, N., Shopf, J., DeCoro, C.: Advanced interactive medical visualization on the GPU. J. Parallel Distrib. Comput. 68(10), 1319–1328 (2008)

    Article  Google Scholar 

  4. Buchart, C., Borro, D., Amundarain, A.: GPU local triangulation: an interpolating surface reconstruction algorithm. Comput. Graph. Forum 27(3), 807–814 (2008)

    Article  Google Scholar 

  5. Hadwiger, M., Sigg, C., Scharsach, H., Buhler, K., Gross, M., Realtime ray-casting and advanced shading of discrete isosurfaces. Comput. Graph. Forum 24(3), 303–312 (2005)

    Article  Google Scholar 

  6. Hirano, M., Itoh, T., Shirayama, S.: Numerical visualization by rapid isosurface extractions using 3D span spaces, J. Vis. 11(3), 189–196 (2008)

    Article  Google Scholar 

  7. Petrik, S., Skala, V.: Technical section: space and time efficient isosurface extraction, Comput. Graph. 32(6), 704–710 (2008)

    Article  Google Scholar 

  8. Kim, S., Choi, B., Kim, S., Lee, J.: Three-dimensional imaging for hepatobiliary and pancreatic diseases: emphasis on clinical utility. Indian J. Radiol. Imaging 19, 7–15 (2009)

    Article  Google Scholar 

  9. Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D., Engel, K.: Real-Time Volume Graphics, 1st edn. A. K. Peters, Ltd., Natick (2006)

    Google Scholar 

  10. Schellinger, P.D., Richter, G., Kohrmann, M., Dorfler, A.: Noninvasive angiography magnetic resonance and computed tomography diagnosis of ischemic cerebrovascular disease. Cerebrovasc. Dis. 24(1), 16–23 (2007)

    Article  Google Scholar 

  11. Park, S.H., Choi, E.K., et al.: Linear polyp measurement at CT colonography: 3D endoluminal measurement with optimized surface-rendering threshold value and automated measurement. Radiology 246, 157–167 (2008)

    Article  Google Scholar 

  12. Schellinger, P.D., Richter, G., Kohrmann, M., Dorfler, A.: Noninvasive angiography magnetic resonance and computed tomography in the diagnosis of ischemic cerebrovascular disease. Cerebrovasc. Dis. 24(1), 16–23 (2007)

    Article  Google Scholar 

  13. Park, S.H., Choi, E.K., et al.: Linear polyp measurement at CT colonography: 3D endoluminal measurement with optimized surface-rendering threshold value and automated measurement. Radiology 246, 157–167 (2008)

    Article  Google Scholar 

  14. Drebin, R., Carpenter, L., Hanrahan, P.: Volume rendering. In: Proceedings SIGGRAPH88, pp 65–74 (1988)

    Google Scholar 

  15. Johnson, C., Hansen, C.: Visualization Handbook. Academic, Orlando (2004)

    Google Scholar 

  16. Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D., Engel, K.: Real-Time Volume Graphics, 1st edn. A. K. Peters, Natick (2006)

    Google Scholar 

  17. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (1988)

    Article  Google Scholar 

  18. Höhne, K.H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U.: Wiebecke G: 3D visualization of tomographic volume data using the generalized voxel model. Vis. Comput. 6(1), 28–36 (1990)

    Article  Google Scholar 

  19. Krüger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE Comp Society, Washington, DC, pp. 287–292 (2003)

    Google Scholar 

  20. Westover, L.: Interactive volume rendering. In; Proc. of the 1989 Chapel Hill Workshop on Volume visualization, ACM, pp. 9–16

    Google Scholar 

  21. Westover, L.: Footprint evaluation for volume rendering. In: SIGGRAPH’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, ACM, pp. 367–376 (1990)

    Google Scholar 

  22. Udupa, J.K., Odhner, D.: Shell rendering. IEEE Comput. Graph. Appl. 13(6), 58–67 (1993)

    Article  Google Scholar 

  23. Gelder, A.V., Kim, K.: Direct volume rendering with shading via three-dimensional textures. In: Proc. of the 1996 Symposium on Volume Visualization. IEEE, pp. 23–30 (1996)

    Google Scholar 

  24. Marroquim, R., Maximo, A., Farias, R.C., Esperança, C.: Volume and isosurface rendering with GPU accelerated cell projection. Comput. Graph. Forum 27(1), 24–35 (2008)

    Article  Google Scholar 

  25. Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. Comput. Graph. 28(Annual Conference Series), 451–458 (1994)

    Google Scholar 

  26. Mroz, L., Hauser, H., Gröller, E.: Interactive high-quality maximum intensity projection. Comput. Graph. Forum 19(3), 341–350 (2000)

    Article  Google Scholar 

  27. Robb, R.: X-ray computed tomography: from basic principles to applications. Annu. Rev. Biophys. Bioeng. 11, 177–182 (1982)

    Article  Google Scholar 

  28. Ahmetoglu, A., Kosucu, P., Kul, S., et al.: MDCT cholangiography with volume rendering for the assessment of patients with biliary obstruction. Am. J. Roentgenol. 183, 1327–1332 (2004)

    Google Scholar 

  29. Fishman, E.K., Horton, K.M., Johnson, P.T.: Multidetector CT and three-dimensional CT angiography for suspected vascular trauma of the extremities. Radiographics 28, 653–665 (2008)

    Article  Google Scholar 

  30. Singh, A.K., Sahani, D.V., Blake, M.A., Joshi, M.C., Wargo, J.A., del Castillo, C.F.: Assessment of pancreatic tumor respectability with multidetector computed tomography: semiautomated console-generated versus dedicated workstation-generated images. Acad. Radiol. 15(8), 1058–1068 (2008)

    Article  Google Scholar 

  31. Fishman, E.K., Ney, D.R., et al.: Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26, 905–922 (2006)

    Article  Google Scholar 

  32. Gill, R.R., Poh, A.C., Camp, P.C., et al.: MDCT evaluation of central airway and vascular complications of lung transplantation. Am. J. Roentgenol. 191, 1046–1056 (2008)

    Article  Google Scholar 

  33. Blinn, J.F.: Light reflection functions for simulation of clouds and dusty surfaces. Comput. Graph. 16(3), 21–29 (1982)

    Article  Google Scholar 

  34. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  35. Rezk-Salama, C.: Volume Rendering Techniques for General Purpose Graphics Hardware. Ph.D. thesis, University of Siegen, Germany, 2001

    Google Scholar 

  36. Engel, K., Kraus, M., Ertl, T.: High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In: Eurographics/SIGGRAPH Workshop on Graphics Hardware’01, Annual Conf Series, pp. 9–16. Addison-Wesley, Boston (2001)

    Google Scholar 

  37. Kraus, M.: Direct Volume Visualization of Geometrically Unpleasant Meshes. Ph.D. thesis, Universität Stuttgart, Germany, 2003

    Google Scholar 

  38. Kraus, M., Ertl, T.: Pre-integrated volume rendering. In: Hansen, C., Johnson, C. (eds.) The Visualization Handbook, pp. 211–228. Academic, Englewood Cliffs, NY (2004)

    Google Scholar 

  39. Röttger, S., Kraus, M., Ertl, T.: Hardware-accelerated volume and isosurface rendering based on cell-projection. In: VIS’00: Proc. Conf. on Visualization’00, pp. 109–116. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  40. Max, N., Hanrahan, P., Crawfis, R.: Area and volume coherence for efficient visualization of 3D scalar functions. SIGGRAPH Comput. Graph. 24(5), 27–33 (1990)

    Article  Google Scholar 

  41. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart hardware-accelerated volume rendering. In: Proc. of the Symp. on Data Visualisation 2003, pp. 231–238. Eurographics Assoc (2003)

    Google Scholar 

  42. Zhang, Q., Eagleson, R., Peters, T.M.: Rapid voxel classification methodology for interactive 3D medical image visualization. In: MICCAI (2), pp. 86–93 (2007)

    Google Scholar 

  43. Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue classification based on 3D local intensity structures volume rendering. IEEE Trans. Vis. Comp. Graph. 6 (2000)

    Google Scholar 

  44. Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Schroeder, W., Avila, L.S., Martin, K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Comput. Graph. Appl. 21(3), 16–22 (2001)

    Article  Google Scholar 

  45. Kniss, J., Kindlmann, G.L., Hansen, C.D.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002)

    Article  Google Scholar 

  46. Higuera, F.V., Hastreiter, P., Fahlbusch, R., Greiner, G.: High performance volume splatting for visualization of neurovascular data. In: IEEE Visualization, p. 35 (2005)

    Google Scholar 

  47. Abellán, P., Tost, D.: Multimodal volume rendering with 3D textures. Comput. Graph. 32(4), 412–419 (2008)

    Article  Google Scholar 

  48. Hadwiger, M., Laura, F., Rezk-Salama, C., Höllt, T., Geier, G., Pabel, T.: Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph. 14(6), 1507–1514 (2008)

    Article  Google Scholar 

  49. Petersch, B., Hadwiger, M., Hauser, H., Hönigmann, D.: Real time computation and temporal coherence of opacity transfer functions for direct volume rendering. Comput. Med. Imaging Graph. 29(1), 53–63 (2005)

    Article  Google Scholar 

  50. Rezk-Salama, C., Keller, M., Kohlmann, P.: High-level user interfaces for transfer function design with semantics. IEEE Trans. Vis. Comput. Graph. 12(5), 1021–1028 (2006)

    Article  Google Scholar 

  51. Rautek, P., Bruckner, S., Gröller, E.: Semantic layers for illustrative volume rendering. IEEE Trans. Vis. Comput. Graph. 13(6), 1336 (2007)

    Article  Google Scholar 

  52. Freiman, M., Joskowicz, L., Lischinski, D., Sosna, J.: A feature-based transfer function for liver visualization. CARS 2(1), 125–126 (2007)

    Google Scholar 

  53. Robb, R.: X-ray computed tomography: from basic principles to applications. Annu. Rev. Biophys. Bioeng. 11, 177–182 (1982)

    Article  Google Scholar 

  54. Mroz, L., Hauser, H., Gröller, E., Interactive high-quality maximum intensity projection. Comput. Graph. Forum 19(3) (2000)

    Google Scholar 

  55. Mora, B., Ebert, D.S.: Low-complexity maximum intensity projection. ACM Trans. Graph. 24(4), 1392–1416 (2005)

    Article  Google Scholar 

  56. Hoang, J.K., Martinez, S., Hurwitz, L.M.: MDCT angiography of thoracic aorta endovascular stent-grafts: pearls and pitfalls, Am. J. Roentgenol. 192, 515–524 (2009)

    Article  Google Scholar 

  57. Kiefer, G., Lehmann, H., Weese, J.: Fast maximum intensity projections of large medical data sets by exploiting hierarchical memory architectures. IEEE Trans. Inf. Technol. Biomed. 10(2), 385–394 (2006)

    Article  Google Scholar 

  58. Kye, H., Jeong, D.: Accelerated MIP based on GPU using block clipping and occlusion query. Comput. Graph. 32(3), 283–292 (2008)

    Article  Google Scholar 

  59. Rubin, G.D., Rofsky, N.M.: CT and MR Angiography: Comprehensive Vascular Assessment. Lippincott Williams & Wilkins, Philadelphia (2008)

    Google Scholar 

  60. Kautz, J.: Hardware lighting and shading: a survey. Comput. Graph. Forum 23(1), 85–112 (2004)

    Article  Google Scholar 

  61. Kniss, J., Premoze, S., Hansen, C.D., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003)

    Article  Google Scholar 

  62. Weiskopf, D., Engel, K., Ertl, T.: Interactive clipping techniques for texture-based volume visualization and volume shading. IEEE Trans. Vis. Comput. Graph. 9(3), 298–312 (2003)

    Article  Google Scholar 

  63. Rheingans, P., Ebert, D.: Volume illustration: nonphotorealistic rendering of volume models. IEEE Trans. Vis. Comput. Graph. 7(3), 253–264 (2001)

    Article  Google Scholar 

  64. Winkenbach, G., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: SIGGRAPH’94: Proc. of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 91–100. ACM, New York (1994)

    Google Scholar 

  65. Lum, E.B., Ma, K.-L.: Hardware-accelerated parallel nonphotorealistic volume rendering. In: NPAR’02: Proc. of the 2nd International Symposium on Non-Photorealistic Animation and Rendering, pp. 67–ff. ACM, New York (2002)

    Google Scholar 

  66. Lum, E.B., Wilson, B., Ma, K.-L.: High-quality lighting for preintegrated volume rendering: In: Deussen, O., Hansen, C.D., Keim, D.A., Saupe, D. (eds.) VisSym, Eurographics, pp. 25–34 (2004)

    Google Scholar 

  67. Chan, M.-Y., Qu, H., Chung, K.-K., Mak, W.-H., Wu, Y.: Relationaware volume exploration pipeline. IEEE Trans. Vis. Comput. Graph. 14(6), 1683–1690 (2008)

    Article  Google Scholar 

  68. Rautek, P., Bruckner, S., Groller, E., Viola, I.: Illustrative visualization: new technology or useless tautology? SIGGRAPH 42(3), 1–8 (2008)

    Article  Google Scholar 

  69. Preim, B., Bartz, D.: Visualization in Medicine: Theory, Algorithms, and Applications (The Morgan Kaufmann Series in Computer Graphics), 1st edn. Morgan Kaufmann, San Francisco, CA (2007)

    Google Scholar 

  70. Sakas, G., Schreyer, L.-A., Grimm, M.: Preprocessing and volume rendering of 3D ultrasonic data. IEEE Comput. Graph. Appl. 15(4), 47–54 (1995)

    Article  Google Scholar 

  71. KH Hohne, M., Bomans, A., Pommert, M., Riemer, C., Schiers, U., Tiede, G.: Wiebecke, 3D visualization of tomographic volume data using generalized voxel model. Vis. Comput. 6(1), 28–36 (1990)

    Google Scholar 

  72. Tiede, U., Schiemann, T., Hohne, K.H.: Visualizing the visible human. IEEE Comput. Graph. Appl. 16(1), 7–9 (1996)

    Article  Google Scholar 

  73. Westover, L.: Interactive volume rendering. In: Proc 1989 Chapel Hill Workshop on Volume Visualization, pp. 9–16. ACM, New York (1989)

    Google Scholar 

  74. Westover, L.: Footprint evaluation for volume rendering. In: SIGGRAPH’90: Proc. of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 367–376. ACM, New York (1990)

    Google Scholar 

  75. Westover, L.: Splatting: A Parallel, Feed-Forward Volume Rendering Algorithm. PhD Thesis, Univ North Carolina, 1991

    Google Scholar 

  76. Lee, R.K., Ihm, I.: On enhancing the speed of splatting using both object- and image-space coherence. Graph. Models 62(4), 263–282 (2000)

    Article  Google Scholar 

  77. Meißner, M., Huang, J., Bartz, D., Mueller, K., Crawfis, R.: A practical evaluation of popular volume rendering algorithms. In: VVS’00: Proc. of the 2000 IEEE Symposium on Volume Visualization, pp. 81–90. ACM, New York (2000)

    Google Scholar 

  78. Higuera, F.V., Hastreiter, P., Fahlbusch, R., Greiner, G.: High performance volume splatting for visualization of neurovascular data. In: IEEE Visualization, p. 35 (2005)

    Google Scholar 

  79. Birkfellner, W., et al.: Fast DRR splat rendering using common consumer graphics hardware. Phys. Med. Biol. 50(9), N73–N84 2005

    Article  Google Scholar 

  80. Spoerk, J., Bergmann, H., Wanschitz, F., Dong, S., Birkfellner, W., Fast DRR splat rendering using common consumer graphics hardware. Med. Phys. 34(11), 4302–4308 (2007)

    Article  Google Scholar 

  81. Audigier, R., Lotufo, R., Falcao, A.: 3D visualization to assist iterative object definition from medical images. Comput. Med. Imaging Graph. 4(20), 217–230 (2006)

    Article  Google Scholar 

  82. Mueller, K., Shareef, N., Huang, J., Crawfis, R.: High-quality splatting on rectilinear grids with efficient culling of occluded voxels. IEEE Trans. Vis. Comput. Graph. 5(2), 116–134 (1999)

    Article  Google Scholar 

  83. Neophytou, N., Mueller, K.: Gpu accelerated image aligned splatting. In: Kaufman, A.E., Mueller, K., Groller, E., Fellner, D.W., Moller, T., Spencer, S.N. (eds.) Volume Graphics. Eurographics Assoc, pp. 197–205 (2005)

    Chapter  Google Scholar 

  84. Udupa, J.K., Odhner, D.: Shell rendering: IEEE Comput. Graph. Appl. 13(6), 58–67 (1993)

    Article  Google Scholar 

  85. Lei, T., Udupa, J.K., Saha, P.K., Odhner, D.: Artery-vein separation via MRA – an image processing approach. IEEE Trans. Med. Imaging 20(8), 689–703 (2001)

    Article  Google Scholar 

  86. Bullitt, E., Aylward, S.: Volume rendering of segmented image objects. IEEE Trans. Med. Imaging 21(8), 998–1002 (2002)

    Article  Google Scholar 

  87. Falcao, A.X., Rocha, L.M., Udupa, J.K.: A comparative analysis of shell rendering and shear-warp rendering. In: Proc. of SPIE Med. Imaging, vol. 4681, pp. 472–482. San Diego, CA (2002)

    Google Scholar 

  88. Botha, C.P., Post, F.H.: Shellsplatting: interactive rendering of anisotropic volumes. In: Proc. of the Symposium on Data Visualisation 2003, pp. 105–112. Eurographics Association (2003)

    Google Scholar 

  89. Grevera, G.J., Udupa, J.K., Odhner, D.: T-shell rendering and manipulation. In: Proc. of SPIE Med. Imaging, vol. 5744, pp. 22–33. San Diego, CA (2005)

    Google Scholar 

  90. Cullip, T.J., Neumann, U.: Accelerating Volume Reconstruction with 3D Texture Hardware. Technical report, Univ North Carolina Chapel Hill, 1994

    Google Scholar 

  91. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Proc. of the 1994 Symposium on Volume Visualization, pp. 91–98. ACM, New York (1994)

    Google Scholar 

  92. Lamar, E.C., Hamann, B., Joy, K.I.: Multiresolution techniques for interactive texture-based volume visualization. IEEE Vis., 355–362 (1999)

    Google Scholar 

  93. Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue classification based on 3D local intensity structures for volume rendering. IEEE Vis. Comput. Graph. 6(2), 160–180 (2000)

    Article  Google Scholar 

  94. Hauser, H., Mroz, L., Bischi, G.I., Groller, E.: Two-level volume rendering. IEEE Trans. Vis. Comput. Graph. 7(3), 242–252 (2001)

    Article  Google Scholar 

  95. Hadwiger, M., Berger, C., Hauser, H.: High-quality two-level volume rendering of segmented data sets on consumer graphics hardware. In: VIS’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 40. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  96. Holmes, D., Davis, B., Bruce, C., Robb, R.: 3D visualization, analysis, and treatment of the prostate using trans-urethral ultrasound. Comput. Med. Imaging Graph. 27(5), 339–349 (2003)

    Article  Google Scholar 

  97. Etlik, O ̈., Temizoz, O., Dogan, A., Kayan, M., Arslan, H., Unal, O.: Three-dimensional volume rendering imaging in detection of bone fractures. Eur. J. Gen. Med. 1(4), 48–52 (2004)

    Google Scholar 

  98. Wenger, A., Keefe, D.F., Zhang, S., Laidlaw, D.H.: Interactive volume rendering of thin thread structures within multivalued scientific data sets. IEEE Trans. Vis. Comput. Graph. 10(6), 664–672 (2004)

    Article  Google Scholar 

  99. Wang, A., Narayan, G., Kao, D., Liang, D.: An evaluation of using real-time volumetric display of 3D ultrasound data for intracardiac catheter manipulation tasks. Comput. Med. Imaging Graph. 41–45 (2005)

    Google Scholar 

  100. Sharp, R., Adams, J., Machiraju, R., Lee, R., Crane, R.: Physics-based subsurface visualization of human tissue. IEEE Trans. Vis. Comput. Graph. 13(3), 620–629 (2007)

    Article  Google Scholar 

  101. Lopera, J.E., et al.: Multidetector CT angiography of infrainguinal arterial bypass. RadioGraphics 28, 529–548 (2008)

    Article  Google Scholar 

  102. Levin, D., Aladl, U., Germano, G., Slomka, P.: Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware. Comput. Med. Imaging Graph. 29(6), 463–475 (2005)

    Article  Google Scholar 

  103. Lehmann, H., Ecabert, O., Geller, D., Kiefer, G., Weese, J.: Visualizing the beating heart: interactive direct volume rendering of high-resolution CT time series using standard pc hardware. In: Proc. of SPIE Med. Imaging, vol. 6141, pp. 614109–1–12. San Diego, CA (2006)

    Google Scholar 

  104. Yuan, X., Nguyen, M.X., Chen, B., Porter, D.H., Volvis, H.D.R.: High dynamic range volume visualization. IEEE Trans. Vis. Comput. Graph. 12(4), 433–445 (2006)

    Article  Google Scholar 

  105. Correa, C.D., Silver, D., Chen, M.: Feature aligned volume manipulation for illustration and visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1069–1076 (2006)

    Article  Google Scholar 

  106. Abellan, P., Tost, D.: Multimodal volume rendering with 3D textures. Comput. Graph. 32(4), 412–419 (2008)

    Article  Google Scholar 

  107. Li, W., Kaufman, A.: Accelerating volume rendering with texture hulls. In: IEEE/SIGGRAPH Symposium on Volume Visualization and Graphics, pp. 115–122 (2002)

    Google Scholar 

  108. Li, W., Kaufman, A.E.: Texture partitioning and packing for accelerating texture-based volume rendering. In: Graphics Interface, p. 81–88 (2003)

    Google Scholar 

  109. Li, W., Mueller, K., Kaufman, A.: Empty space skipping and occlusion clipping for texture-based volume rendering. IEEE Vis. 317–324 (2003)

    Google Scholar 

  110. Bethune, C., Stewart, A.J.: Adaptive slice geometry for hardware-assisted volume rendering. J. Graph. Tools 10(1), 55–70 (2005)

    Google Scholar 

  111. Keles, H.Y., Isler, V.: Acceleration of direct volume rendering with programmable graphics hardware. Vis. Comput. 23(1), 15–24 (2007)

    Article  Google Scholar 

  112. Ibanez, L., Schroeder, W., Ng, L., Cates, J., the Insight Software Consortium: The ITK Software Guide, 2nd edn. updated for itk v2.4 Nov 2005

    Google Scholar 

  113. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 3rd edn. Kitware Inc., Clifton Park, (2004)

    Google Scholar 

Download references

Acknowledgments

The authors thank the following people for allowing us to use their images as sample images: Marjo Götte, Novartis Institutes for BioMedical Research; Dr. Myles Fennell, Wyeth Research, Princeton, NJ, USA; Dr. Xiaokui Zhang, Helicon Therapeutics, Inc., USA; Prof. Pat Doherty, Kings College, London, UK; Dr. Jenny Gunnersen, Prof. Seong-Seng Tan, and Dr. Ross O’Shea Howard Florey Institute, Melbourne; Prof. Cynthia Whitchurch, UTS, Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Eagleson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, Q., Peters, T.M., Eagleson, R. (2011). Medical Image Volumetric Visualization: Algorithms, Pipelines, and Surgical Applications. In: Dougherty, G. (eds) Medical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9779-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9779-1_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9769-2

  • Online ISBN: 978-1-4419-9779-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics